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Abstract. Specific leaf area (SLA; fresh-leaf area/dry mass) describes the amount of leaf area for light capture per unit of
biomass invested. The standard protocol is simple; however, it requires recently collected sun-exposed leaves to determine
fresh-leaf area, limitingwhere andwhich samples can be studied. A protocol to predict SLA for fresh leaves from herbarium-
dried leaveswas developed from samples collected in a dry forest in Bolivia. Leaf areawasmeasured both fresh and dried on
the same leaf samples to generate two general mixed-effects models, varying in their inclusion of the position in the crown
where the leaf developed. As a test of the potential generality of the models for other systems, we applied them to samples
collected in an oak–hickory forest in Missouri, USA. Both models performed well. A recommended protocol for studies
predicting SLA fromdry leaveswas developed. These predictivemodels and protocols can extend the temporal, geographic,
ecological and taxonomic scope of SLA studies.
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Introduction

Plants allocate resources (e.g. carbon and nutrients) in the
construction of leaves. Leaves in turn pay returns on this
investment by harvesting energy from sunlight. Plants depend
on this energy gained to maintain metabolic processes and build
vegetative and reproductive organs (Wright et al. 2004). Biotic
and environmental factors should provide strong selection to
optimally allocate resources for light capture (Markesteijn
2010). Optimal leaf-tissue allocation varies within and among
individuals and species. Inter- and intraspecific variation is driven
in part by climatic and topographic differences, such as altitude
(Whittaker 1967), latitude (Wright et al. 2004), climatic variation
(McDonald et al. 2003; Ackerly 2004), geology (Whittaker
1967) and soil fertility (McDonald et al. 2003; Ackerly and
Cornwell 2007), whereas intra-individual variation is driven
by microclimatic differences, such as light and wind exposure
within the crown (Marshall and Monserud 2003; Koch et al.
2004; Sack et al. 2006). For instance, leaves exposed to direct
sunlight are often small and thick, with a low surface area tomass
ratio and high photosynthetic capacity, with the reverse being
the case for shade leaves (Rozendaal et al. 2006; Hulshof and
Swenson 2010; Markesteijn 2010).

Variation in allocation strategies can be understood through
measuring morphological and physiological characteristics
thought to influence plant performance, i.e. functional traits

(Grime 1979; Tilman 1988; Westoby et al. 2002; McGill et al.
2006). A series of leaf traits describing leaf-allocation patterns
and physiological function, known as the ‘leaf economics
spectrum’, has shown tight coordination (Wright et al. 2004).
These leaf traits include specific leaf area (SLA, or its
inverse = leaf mass per area), photosynthetic capacity, nitrogen
and phosphorus content, dark respiration rate and lifespan
(Wright et al. 2004). The leaf-economics spectrum runs from
quick to slow returns on investment of nutrients and dry
mass (Wright et al. 2004). Species with high leaf nutrient
concentrations, high photosynthetic and respiration rates, short
leaf lifespans and a high SLA are at the quick-returns end of the
spectrum, with the converse being true of species at the slow-
returns end (Reich et al. 1997; Westoby et al. 2002; Wright et al.
2004).

Among the traits in the leaf-economics spectrum, SLA (fresh-
leaf area/dry mass) is one of the easiest to measure and can be
readily determined for numerous samples. SLA describes the
amount of leaf area for light capture per unit of biomass invested.
Although the standard protocol for measuring SLA is simple, it
requires access to recently collected sun-exposed leaves to
determine fresh-leaf area (Pérez-Harguindeguy et al. 2013).
This requirement limits the types of samples that can be used
to measure SLA; previously collected and dried leaves, such as
ecological vouchers and herbarium specimens, are excluded.
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Herbarium vouchers are further complicated because
microenvironment (e.g. position of the leaf in the crown) is
seldom recorded but may influence SLA values. A few studies
have recently determinedSLAbyusing the dry-leaf area (SLAdry;
Christianson and Niklas 2011; Maharjan et al. 2011; Juneau
and Tarasoff 2012); however, none of these studies estimated the
SLA for fresh-leaf area (SLAfresh), meaning that these measures
cannot be compared with the wealth of SLA studies on fresh
leaves.

Given the substantial ecological information that can be
obtained by studying SLA and the limitation imposed by the
current protocol, the objectives here were to (1) develop a
sampling protocol and modelling approach to predict SLA
from dried samples that can extend the temporal, geographic,
ecological and taxonomic scope of the technique allowing us to
collect data from dried samples (e.g. from samples stored in
herbaria), (2) test the utility of the technique and generality of
our predictive models, and (3) propose these sampling and
modelling approaches as a field standard.

We made the following hypotheses: (1) leaf area will be
reduced after the leaf is dried; this expectation follows from
the fact that ~70% of leaf mass is water (Hopkins 1999); (2) SLA
decreases as leaves dry out because water content influences
leaf area and SLA variation; SLA from dried samples will be
smaller than SLA from fresh samples (Garnier et al. 2001);
(3) an accurate predictive model for SLA using dried
samples should have, as covariates, information about the
microenvironment where the leaf developed (e.g. position of
the leaf in the crown), because SLA is known to vary with
environment (Ackerly 2004; Rozendaal et al. 2006; Sack et al.
2006).

We developed two models to test the relationship
between SLA from fresh and dried leaves. One model is for
studies where leaf position in the canopy is known, whereas
the second model is for studies where this position is
unknown. We tested the generality of our models with an
independent dataset from trees in an oak–hickory forest in
Missouri, USA.

Materials and methods
Study site
The study was primarily conducted in a dry forest in the
Madidi National Park (MNP) in north-eastern Bolivia. The
dry-forest area in the MNP is 1418 km2 (Killeen et al. 2005),
situated within the Tuichi River watershed, with an elevational
gradient ranging from 600 to 1500m. The region is characterised
by having a wet and dry season each year, with three extremely
dry months from June to August. It has a mean annual
temperature of 20.5�C (Navarro 2002) and a mean annual
precipitation that varies between 1200 and 1400mm (Mueller
et al.2002). The project ‘Floristic inventory of theMadidi region’
established 16 1-ha plots in 2005. To examine the influence of
the drying process on SLA, four of these plots were selected
because of their high species richness and accessibility. The
plots are located in Resina (14�2000.500S, 68�34020.600W,
1034m), Chirimayu (14�14047.500S, 68�3508.600W, 850m),
Chaquimayu (14�1508.700S, 68�3109.100W, 795m) and Buena
Hora (14�11055.500S, 68�38023.400W, 1150m).

Sampling methods
To include a diverse set of species capturing a wide breadth of
phylogenetic and functional traits from this forest, we sampled
102 species that belong to 35 families, with up to eight replicates
per species per plot (depending on availability) and two replicates
per individual. In total, 541 individuals were sampled across the
four plots. To capture the largest amount of intra-crown plasticity
(Rozendaal et al. 2006; Sack et al. 2006; Hulshof and Swenson
2010), two within-individual replicates were collected, one from
the top and one from the bottom of the crown (i.e. sun and shade
leaveswithin a given crown).Within eachplot,we selected robust
and apparently healthy trees of all species that had tagged
individuals with accessible crown leaves (via tree climbing). In
all cases, we sampled mature and fully expanded leaves with
minimal symptoms of pathogens, minimal coverage by epiphylls
(lichens, fungi, liverworts) and no signs of senescence or
herbivory (Pérez-Harguindeguy et al. 2013).

After harvesting, leaf area andmasswere determined. Petioles
were included in leafmeasures (Pérez-Harguindeguy et al. 2013).
In the case of compound leaf species, one leaflet was harvested
and treated as a leaf, because a leaflet is functionally equivalent
to a simple leaf (Kraft et al. 2008; Baraloto et al. 2010; Lebrija-
Trejos et al. 2010). To obtain fresh-leaf area, top- and bottom-
crown leaveswereflattened between Plexiglas sheets with a scale
bar and photographswere takenwith awhite background. Leaves
were treated as herbarium samples (Bean 2010) to replicate
the procedure used for plants deposited in a herbaria. After
photographs of fresh-leaf areas were taken, leaf samples were
pressed and dried in field stoves.

Once leaves were dried, a second photo was taken to obtain
dry-leaf area, following the same procedures as for fresh leaves.
Finally, leaves were placed in an oven for 24 h at 60�C and then
weighed to obtain dry mass, at the Institute of Ecology at the San
Andrés University (La Paz, Bolivia). Leaf area was calculated
from the digital photos of fresh and dried leaves with the program
ImageJ (Rasband 2011). In addition, we measured leaf thickness
at the midpoint of the leaf between major veins with calipers, for
both fresh and dried leaves. Two SLA values were obtained for
each collected leaf, one using the fresh-leaf area and dividing by
its dry mass (= SLAfresh) and the second using the dry-leaf area
and dividing by its dry mass (= SLAdry). All data are deposited in
the Tropicos database (Missouri Botanical Garden 2012).

Model fitting
Values of SLA showed log-normal distributions and were log10
transformed for all analyses. To test whether the slope differed
from 1 and intercept differed from 0 between fresh- and dry-leaf
areas and between SLAfresh of top-crown leaves and SLAfresh of
bottom-crown leaves, reduced major axis (RMA) regressions
were run using the package ‘smatr’ (Warton et al. 2012) in the
R programming environment (R Development Core Team
2011). RMA regression analyses were developed to fit a line
regardless of which variable is treated as X or Y, thus allowing for
presence of error along both X and Y axes (Warton et al. 2006;
Smith 2009).

To evaluate different models that predict SLAfresh from
SLAdry, we used the linear mixed-effects (LME) function
available in the R package ‘lme4’ (Bates et al. 2011). General
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linear mixed-effects models present a statistical framework
that allows simultaneous incorporation of fixed effects (SLAdry

and crown position) that we hypothesised a priori to influence
modelled values for SLAfresh, as well as random effects (species
and individuals) that may influence values of SLAfresh but are
not the focus of the current study. Another advantage of using
LME models is that they allow for unbalanced datasets (e.g.
different sample sizes of individuals within species).

Twomodelswere used to predict SLAfresh. Variables included
in the models were discrete (position of the leaf in the crown,
individuals and species) and continuous (SLAdry). Species and
individuals were considered random effects in all models, with
individuals being nested within species, and SLAdry was a fixed
effect in all models. The crown leaf position was treated as a
dummy variable (1 = top-crown leaf and 0 = bottom-crown leaf)
that was either considered as a fixed or random effect, depending
on the model. InModel 1, it was considered as a random effect to
generate a predictive model for SLAfresh to be applied to dried
samples where the position of collection within the crown is
unknown (Table 1). Model 1 assumes that to accurately estimate
the parameters of the general model on the basis of data from the
present study, position of the leaf in the crown should be added
as a random-effect term because it influences the variability of
leaf traits and, as a consequence, produces variation in SLAfresh

(Sack et al. 2006; Hulshof and Swenson 2010). This model has
species as a random effect because values of SLAfresh have
high interspecific variation (Hulshof and Swenson 2010).
Additionally, it has individuals within a species as a random
effect, assuming that incorporating among-individual variation in
SLAfresh will increase model accuracy. In Model 2, crown leaf
position was considered as a fixed effect to generate a model to
predict SLAfresh for those dried samples where the crown
position is known (Table 1), and species and individuals were
added as random-effect terms.

Model selection
Bayesian information criterion (BIC) and Akaike information
criterion (AIC; Akaike 1974) were used for model selection. AIC
is well suited to situations where the predictive capacity of
the model is important, because AIC evaluates the likelihood
of each model in the set, taking into account how well it fits the
data, but also penalising for adding additional model parameters
(Hilborn andMangel 1997;BurnhamandAnderson2002).BIC is
a criterion for model selection that is based on the likelihood
function. BIC also introduces a penalty for the number of
parameters in the model, and this penalty term is larger in BIC
than in AIC (Bhat and Kumar 2010). Both criteria use the lowest
value to identify the best model (Hilborn andMangel 1997; Bhat

and Kumar 2010). In addition to AIC and BIC, we used analysis
of variance (ANOVA) to compare fit between nested models
(i.e. Model 1 versus Model 2).

We estimated 95% confidence regions for the parameters in
each of the models selected according to AIC and BIC, by
generating sampling distributions applying the Gibbs
sampling algorithm of Markov Chain Monte Carlo (MCMC)
methods (Manly 1997). We used the package ‘lme4’ to run 1000
simulations, each having 1000 iterations. Only parameter
estimates obtained in the 1000th iteration of each simulation
were kept as part of the sampling distribution (Manly 1997).

Model testing
Our objective was to develop an accurate model to predict
SLAfresh from dried leaf samples. To determine whether the
models could potentially be extended to predict SLAfresh from
dried leaf samples for plant species from locations other than the
Bolivian dry forests, we sampled plants from a temperate
deciduous oak–hickory forest at Washington University in St.
Louis’TysonResearchCenter located in Eureka,Missouri, USA,
as a test dataset. We harvested leaves from five individuals
per species (Quercus alba L., Fraxinus americana L., Celtis
occidentalis L., Lonicera japonica Thunb. ex Murray, and
Juglans nigra L.). For each individual, we collected one leaf
from the top (sun-exposed) and one leaf from the bottom (shade)
of the crown. Leaves were treated identically to the Bolivian
leaves, with all processing occurring at the University of
Missouri-Saint Louis. Predicted SLAfresh was obtained by
applying the models constructed from the Bolivian samples.
We performed RMA to determine the strength of the linear
relationship between the predicted SLAfresh and the actual
SLAfresh. We expected that if the predictive models generated
were accurate, the intercept of the regression would not deviate
significantly from 0 and the slope would not deviate significantly
from 1. Additionally, we compared the degree of fit between
Models 1 and 2 by using an ANOVA.

Results

Values of SLAfresh from the Bolivian dry forest ranged from
5.3m2 kg–1 (Calliandra chulumania Barneby, Fabaceae) to
23.7m2 kg–1 (Phyllostylon rhamnoides (J.Poiss) Taub.,
Ulmaceae). Variation in SLAfresh values was mainly explained
by interspecific (50.3%) differences, with smaller contributions
from among-individual (19.7%) and within-individual (30.0%)
differences. Although within-individual variation was high, it
should be remembered that samples within an individual were
selected to represent the most extreme values. When regressing
SLAfresh of top-crown leaves onto SLAfresh of bottom-crown

Table 1. Candidate models and estimated parameters of the candidate models developed for 109 species from
Madidi National Park, Bolivia

SLAfresh = fresh-leaf area/dry mass (m2 kg–1); SLAdry = dry-leaf area/dry mass (m2 kg–1). LP, leaf position in the crown;
species, list of species names; individuals, individual number per species

Model a b c

Model 1: logSLAfresh = a+ blogSLAdry + species
A + individualsA +LPA –0.18 0.88

Model 2: logSLAfresh = a+ blogSLAdry + cLP+ species
A + individualsA –0.16 0.88 0.04

AThe variable was considered a random-effects term in the model.
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leaves, the slope (b= 1.2) was significantly (P < 0.001) different
from 1 and the intercept (a = –0.2) was significantly (P< 0.001)
different from 0. Similarly, the slope (b= 1.1) of the regression of
fresh- onto dry-leaf area was significantly (P < 0.001) different
from 1 and the intercept (a = 5.9� 10–5) was significantly
(P = 0.006) different from 0 (Fig. 1).

Across the dataset, shrinkage during the drying process of the
samples was on average 16%. Interestingly, a small proportion
(~14%) of the leaves seemingly gained leaf area during the
drying process. On average, those leaves that lost area lost
380� 587mm2 and those leaves that gained area gained
235� 397mm2. We tested whether variation in shrinkage was
associated with other leaf traits, namely leaf thickness, leaf area
and SLAfresh, and found that variation in shrinkage was unrelated
to variation in any of these other leaf traits (P > 0.05; data not
shown). Leaves that gained in area had both thin and thick leaves,
and both big and small leaf areas and SLAfresh.

SLA-predictive models

Two candidatemodels were generated to predict SLAfresh.Model
1 was built to predict SLAfresh from dried samples that lack
information about where in the crown they were collected
(typical for herbarium samples), and Model 2 was built to

predict SLAfresh from dried leaf samples that have information
about from where in the crown the leaves where collected. We
compared the twomodels to gauge the importance of information
on crown position when it is available, using AIC, BIC and
ANOVA. Model 2 (AIC = –3269.2, BIC = –3239.2) performed
significantly (P< 0.001) better than didModel 1 (AIC = –3279.1,
BIC = –3249.3). These results suggested that a more accurate
prediction of SLAfresh for samples from MNP is obtained from
dried leaf samples when it is known from where in the crown the
samples were collected. It should be noted, however, that
although Model 2 was significantly more accurate, differences
in model-parameter estimates were small (Table 1).

We estimated the sampling distribution of the parameters
in the models to determine the 95% confidence region. We
obtained a sample from the Bayesian posterior distribution of
the parameter estimates (a and b) for both selected models by
using MCMCmethods. For both Models 1 and 2, a high number
of points were concentrated near the mean points (Table 2). The
slopes did not differ between the models, whereas the intercepts
were significantly different, although this difference was small.
The bivariate distributions of the 1000 parameter estimates for
Models 1 and 2 were positively correlated; the covariance of the
parameters was also positive (Table 2), indicating that a increases
with an increasing b.

Application of the SLA-predictive models

The third objective of the study was to propose the application of
these predictive models to other datasets. To test the potential for
extending our models to other systems, we applied the models
obtained from data gathered in Bolivia to our test dataset. We
determined the degree to which the predicted SLAfresh correlated
with the actual SLAfresh. The range of SLAfresh for samples
collected in the temperate forest was within the range of
SLAfresh values for samples collected in Bolivia (Fig. 1).

When regressing the actual SLAfresh onto predicted SLAfresh,
both predictive models (from Models 1 and 2) had slopes not
significantlydifferent from1, intercepts not significantly different
from 0, and R2 > 0.80 (Fig. 2). Additionally, we regressed
SLAfresh top-crown leaves onto SLAfresh bottom-crown leaves
from the experiment and found that they were not significantly
different from a slope of 1 and an intercept of 0 (slope = 1.12,
P = 0.1; intercept = –0.08, P= 0.4). Because the R2-value was
larger for Model 1 than for Model 2 (Fig. 2) and because the
slope and intercept of top- and bottom-crown leaves did not differ
from isometry, we concluded that Model 1 predicts SLAfresh for
dried leaf samples more accurately than does Model 2.

Discussion

Specific fresh-leaf area, SLAfresh, is an easy tomeasure functional
trait that provides insight into leaf allocation and function
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Fig. 1. The regression between SLAdry and SLAfresh for 109 species from
Madidi National Park, Bolivia, and five species from Tyson Research Center,
Eureka, Missouri, USA. For the Bolivian data, grey circles denote bottom-
crown leaves, and black circles denote top-crown leaves. The dotted line
corresponds toModel 1, the solid line corresponds toModel 2 from top-crown
leaves, and thedashed line corresponds toModel 2 frombottom-crown leaves.
The USA data are denoted by white squares.

Table 2. Mean, variance and covariance values of the samples generated from theBayesian posterior distribution of
the parameters (a and b) forModels 1 and 2, usingMarkov ChainMonte Carlo methods for 109 species fromMadidi

National Park, Bolivia

Model Mean of a Variance of a Mean of b Variance of b Covariance of a and b

Model 1 –0.18 0.005 0.88 0.00016 –0.0001
Model 2 –0.17 0.0002 0.88 0.00017 –0.0002
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(Ackerly 2004; Kraft et al. 2008; Cornwell and Ackerly 2009;
Pérez-Harguindeguy et al. 2013). The main drawback of the
existing SLAfresh protocol is the requirement for measures of
fresh-leaf area, limiting the types of samples that can be used. In
the present study, using samples from a Bolivian dry forest, we
generated twomodels to predict SLAfresh fromdried leaf samples.
One model requires information about from where in the crown
the leaf was collected, whereas the other model does not require
crown-position knowledge. The generality of the models was
tested on data collected in a very different temperate deciduous
forest.Althoughbothmodelsperformedwell, the simplermodel–
not requiring information about crown position (Model 1) –

provided the best prediction of SLAfresh in this forest. We
believe that we have established models that should be
applicable to other datasets. We have also established an easy-
to-followprotocol for researcherswanting to determine equations
specific to their study species.

Amendments to the SLA protocol for dry-leaf samples

Although the standard protocol for SLAfresh (Pérez-
Harguindeguy et al. 2013) provides a useful tool for
researchers, we propose the following modifications. These
modifications make the protocol more accessible for
researchers working with dried leaf samples (e.g. samples

stored in herbaria) to obtain SLAfresh data that they can
compare with those from other studies. First, we suggest that it
is possible to use dried leaf samples when fresh leaf samples are
not available. From dried samples, mature fully expanded leaves
with no herbivore or pathogen damage should be selected,
avoiding folded leaves. The targeted leaf should be removed,
including its petiole, and measured following the current
protocol. Second, we suggest that the measures of the area of
the dried leaf be taken as explained in the measurement of fresh-
leaf area in the protocol of Pérez-Harguindeguy et al. (2013).
After the area is measured, the leaf should be placed in an oven at
60�C for 24 h and weighed. SLAdry can be obtained by dividing
dry-leaf area by dry-leaf mass. This value can be used in the
following equation,whichwas constructed throughgeneral linear
mixed-effects models (Table 1), to obtain predicted SLAfresh:

log10ðSLAfreshÞ ¼ �0:17þ 0:88ðlog10ðSLAdryÞÞ ð1Þ
In caseswhere leaves canbe collected in thefield but fresh-leaf

area cannot be obtained, the crown position where the samples
were collected should be noted and researchers should determine
whether SLA is higher, lower or not significantly different
between the top and the bottom of the crown in their study
species. Additionally, if top-crown sun-exposed leaves are not
accessible for sampling, bottom-crown shade leaves should be
collected and differences between the SLA inside and the SLA
outside the crown be determined. The samples should be
processed as mentioned above. In either case, SLAfresh should
be predicted using the following equation, as determined through
general linear mixed-effects models (Table 1):

log10ðSLAfreshÞ ¼ �0:18þ 0:88ðlog10ðSLAdryÞÞ
þ 0:04ðcrown positionÞ ð2Þ

When SLA is higher at the top, Eqn 2 should be used and a
value of 1 input for top leaves and a value of 0 input for bottom
leaves for the crown-position term. When SLA is higher at the
bottom, Eqn 2 should be used and a value of 0 input for top leaves
and a value of 1 input for bottom leaves for the crown-position
term.WhenSLA isnot different between the topandbottomof the
crown, Eqn 1 should be used.

Effects of drying on leaf area

Because leaves contain a large amount of water, we hypothesised
that SLAdry would be smaller than SLAfresh. In the dataset, we
found that fresh-leaf area was significantly greater than dry-leaf
area, which was not surprising. Whereas the predicted tendency
was found across the entire dataset, 14% of the collected samples
gained rather than lost leaf area during the drying process. Several
explanations are possible for this result. For instance, it could be
that leaves that gained area were thicker and, when pressed while
drying, they added area; however, no relationship between the
change in leaf area with drying and leaf thickness was found.
Additionally, leaf area increased in both simple and compound
leaf species, from leaves collected from the bottom and top of the
crown, and from leaves with large and small fresh-leaf areas and
SLAs. We did find that image quality was lower in samples that
increased in leaf area as they dried. The program ImageJ, which
we used to measure the leaf area, has a threshold tool that selects
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Fig. 2. The correlation of the actual specific fresh-leaf area (SLAfresh) versus
the predicted SLAfresh for five species from USA.When regressing the actual
SLAfresh onto the predicted SLAfresh with Model 1, the slope was 1.09
(confidence intervals: 0.96–1.24), the intercept was –0.05 (confidence
intervals: –0.21–0.12), and the R2 was 0.84. When regressing the actual
SLAfresh onto the predicted SLAfresh with Model 2, the slope was 1.12
(confidence intervals: 0.97–1.30), the intercept was –0.08 (confidence
intervals: –0.27–0.12), and the R2 was 0.80. Black squares are values
predicted by Model 1 and grey dots are values predicted by Model 2. The
black line is the regression line of the relation between the actual
log10(SLAfresh) and the predicted log10(SLAfresh) that was predicted by
Model 1, and the grey line is the regression line of the relation between
the actual log10(SLAfresh) and the predicted log10(SLAfresh) thatwas predicted
by Model 2. The dashed line shows the 1 : 1 ratio between the actual
log10(SLAfresh) and the predicted log10(SLAfresh).
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the object to bemeasured. The threshold process can be difficult if
the image does not have enough contrast (e.g. if the leaves are
pale, if they have shadows, or if the quality is low and then edges
are hard to identify;Davidson2011). In these cases, the area of the
object to be measured can be under- or overestimated. A way to
avoid such problems is to photograph leaves against a contrasting
background with continuous light across the sample.

Leaf crown position

Our third expectation was that an accurate predictive model of
SLAfresh for dried samples should have covariates that describe
the environment where the leaf developed, such as position of the
leaf in the crown. The model including crown position (Model 2)
was a better fit to the data for samples from the tropical Bolivian
forest. However, for samples from the temperate deciduous
oak–hickory forest, Model 1, which lacked information on
crown position, was more accurate in predicting SLAfresh than
was Model 2. Our results showed that these species from this
forest did not differ significantly in SLAfresh between top- and
bottom-crown leaves. This finding was surprising because the
bottom- and top-crown values of SLAfresh were significantly
different in other datasets (Wright et al. 2007; Hulshof and
Swenson 2010; the present study from Bolivia). A possible
explanation for these differences could be that temperate
deciduous forests in USA have crowns that are less stratified
in their irradiance. Additionally, it should be noted that even for
the Bolivian species, Model 2 did not lead to large shifts in the
model parameters, suggesting that crown position had a
significant but modest influence on SLAfresh. When available,
we suggest that both models should be tested on data from other
ecosystems. We expect that Model 2 will be more accurate in
ecosystems where the canopy has greater light stratification.

A second striking finding regarding crown position in the
Bolivian forestwas that ~42%of the trees had a lower SLAfresh for
bottom-crown leaves (shade) than for top-crown leaves (sun-
exposed). This was further supported by a positive coefficient for
crown position in the models. However, top- and bottom-crown
leaves from the experiment developed in the USA were not
significantly (P = 0.7) different. These findings do not support
the general trend in other studies in which sun leaves had lower
SLAfresh than shade leaves (Rozendaal et al. 2006; Sack et al.
2006; Hulshof and Swenson 2010). However, studies have
reported species with shade leaves with a lower SLAfresh than
that of sun leaves (Talbert and Holch 1957; Niinemets and Kull
1994; Carr 2000; Richardson et al. 2000). On the basis of these
different results, we recommend that intra-crown SLAfresh

differences should be evaluated when possible.

Top-crown leaves are difficult to collect in tropical forests

Considering that upper-crown sun leaves are difficult to collect in
most tropical forests because of their tall stature, standardised
methods such as the SLAfresh protocol proposed by Pérez-
Harguindeguy et al. (2013) may be difficult to apply. In most
situations, it will be easier to collect leaves from bottom-crown
branches exposed to sun. Sack et al. (2006) reported that the
variation in SLAfresh between top-crown sun leaves and bottom-
crown sun leaves is minimal and that more variation is explained
by differences in irradiance. They found that bottom-crown

internal leaves (shade) differ strongly from bottom-crown
external leaves (sun-exposed). Considering these results and
the height of many tropical forest trees, we suggest that
bottom-crown external leaves (sun-exposed) may be easier to
collect and bottom-crown exterior versus interior leaves are likely
to represent the extremes inSLAfresh through the crownof the tree.
However, it would be useful to explicitly test this expectation.

Increasing the value of herbaria collections

In our study, we have shown that dried samples from herbaria can
be used to predict functional leaf traits, such as leaf size and SLA,
allowing researchers to place values of these sample traits into a
comparative context. We suggest that such ecological uses of
herbaria samples are value adding to both the use of herbaria and
studies of functional traits. Herbaria samples capture potential
variation in trait values over large ranges in space and time. Such
studies should increase the utility of herbaria collections, and
hopefully the importance of such studies can be leveraged to
increase herbaria budgets. However, to allow ecologists to non-
destructivelymake use of such samples, herbaria should consider
othermountingmethods besides gluing specimens to paper. Glue
canaddmass to the leaves andmake it difficult to separate samples
from paper.We recommend specimens be sewn to paper. In cases
where gluing is necessary, we recommend the use of a water-
soluble glue or a replicate leaf, with its petiole being placed in an
envelope with the specimen.

In the present study,wedeveloped twomodels that canbeused
to predict SLAfresh from dried leaf samples. Both models have
been applied to a dry tropical and deciduous temperate forest. On
the basis of our results, we believe that they should prove
applicable across different study systems; however, we
recommend that they be validated when possible in other
systems, to test their generality (e.g. the importance of crown
position for prediction may differ). Additionally, users should
keep in mind when applying the predictive models that they
worked well for our study, explaining 80–85% of the variation;
however, 15–20% of the variation remained unexplained.
Depending on how SLA values are used, these errors have the
potential to propagate in further analyses.

A useful application of these SLA models is that they allow
data collected from herbarium samples or from samples collected
in remote locations, in situations where portable scanners are not
available, to be comparedwith data from other studies around the
world. For instance, herbaria samples could be used to ask
questions about shifts in SLA over time as a result of climate
change. Recently, Guerin and Lowe (2012) used historical
herbarium specimens to study the variation of leaf width over
timeas a result of climate changeandcompared those recordswith
recently collected samples in SouthAustralia; they found that leaf
width had decreased by 2mm over 127 years. Additionally,
herbarium samples can be used to evaluate the amount of
intraspecific variation across large geographic ranges. These
predictive models extend the temporal, geographic, ecological
and taxonomic scope of SLA studies.
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