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FUNCTIONAL TRAITS AND GRAIN SIZE IN SPECIES ASSEMBLAGES OF A NEOTROPICAL DRY
FOREST

Abstract

A long-standing question in ecology is how so many tree species can coexist. New
insight into assembly processes has been gained through functional traits that influence
fitness. Such traits include the maximum height and diameter of a species as these describe
the plant’s ability to compete for light. Additionally, specific leaf area (SLA) describes the
amount of leaf area for light capture per unit of biomass invested. SLA is one of the easiest
traits to measure, but it depends on access to fresh leaf material which is not possible for
samples from remote areas or historical collections e.g. herbaria. The study examined
community assembly patterns based on species functional tratis in a species-rich tropical dry
forest at the Madidi National Park (MNP) of Bolivia.

In my first chapter, a protocol to predict SLA for fresh leaves from dry leaves was
developed. On the same leaf, area was repeatedly measured for fresh and dried leaves to
generate four general mixed effects models, varying in their inclusion of the position in the
crown where the leaf develops. The accuracy of the models was tested on leaves from an
oak-hickory forest in USA. Both models performed well and are readily applicable to other
datasets. A protocol for studies predicting SLA from dry leaves was developed.

In my second chapter, | investigated the distribution of trait values at plots of
different sizes to understand processes that lead to different species assemblages.
Deterministic (habitat filtering and competitive exclusion) and stochastic processes are
potential drivers of species coexistence in assemblages. The importance of these non-
exclusive processes in structuring assemblages at different scales remains unclear. |
compared the trait dispersion of SLA (using models from chapter 1), maximum height, and
maximum diameter of observed versus null species assemblages with metrics sensitive to
deterministic processes. | found evidence for deterministic processes structuring species
assemblages in the MNP. Competitive exclusion had greater importance at small grain sizes.
Habitat filtering had greater importance at large grain sizes. Ecologically, the results indicate
that stabilizing processes promote patterns of species diversity and co-existence in a
species-rich tropical dry forest in Bolivia.



SPECIFIC LEAF AREA: A PREDICTIVE MODEL USING DRIED SAMPLES

INTRODUCTION

Plants allocate limited resources (e.g., carbon and nutrients) in the construction of
leaves. Leaves in turn pay returns on this investment by harvesting energy from sunlight.
Plants depend on this energy gained to maintain metabolic processes and build vegetative
and reproductive organs (Wright et al. 2004). Biotic and environmental factors should
provide strong selection to optimally allocate resources for light capture (Markesteijn 2010),
a suboptimal allocation would lead to declining plant fitness. Leaf construction varies within
and among individuals and species. This variation is driven in part by environment (e.g.,
variation in latitude, altitude, soil fertility, water availability, canopy height, light availability;
Bongers and Popma 1990, Whitmore 1996, McDonald et al. 2003, Ackerly 2004, Sack et al.
2006), as well as phylogenetic background of the species. For instance, leaves exposed to
direct sunlight are often small and thick with low surface to leaf mass and high
photosynthetic capacity (Bjorkman 1981, Klich 2000, Rozendaal et al. 2006, Markesteijn
2010, Hulshof and Swenson 2010), while shade leaves are large and thin with low leaf mass
to surface area (Evans and Poorter 2001, Rozendaal et al. 2006, Hulshof and Swenson 2010).

Variation in allocation strategies can be understood through the measure of
morphological and physiological characteristics thought to influence plant performance,
often denoted as functional traits (Grime 1979; Tilman 1988, Westoby et al. 2002, McGill et
al. 2006). A series of leaf traits describing leaf allocation patterns and physiological function,
known as the leaf economics spectrum, has shown tight coordination (Wright et al. 2004).
These leaf traits include specific leaf area (or its inverse = leaf mass per area),
photosynthetic capacity, nitrogen and phosphorous content, dark respiration rate, and
lifespan (Wright et al. 2004). The leaf economics spectrum runs from quick to slow returns
on investment of nutrients and dry mass (Wright et al. 2004). Species with high leaf nutrient
concentrations, high photosynthetic and respiration rates, short leaf lifespan, and low dry
mass per leaf area, are at the quick returns end of the spectrum, with the converse being
true of species at the slow returns end of the spectrum (Coley et al. 1985, Choong et al.
1992, Ryser 1996, Reich et al. 1997, Reich 1998, Garnier et al. 2001, Wright et al. 2004).

Among the traits in the leaf economics spectrum, specific leaf area (SLA, ratio of
fresh leaf area to dry mass) is one of the easiest to measure and can readily be determined
for numerous species. SLA describes the amount of leaf area for light capture per unit of
biomass invested. While the standard protocol for measuring SLA is simple, it requires
access to recently collected sun-exposed leaves to determine fresh leaf area (Cornelissen et
al. 2003). This recommendation limits the types of samples that can be used to measure
SLA. For instance, previously collected and dried leaves, such as herbarium specimens,
cannot be used. Additionally location within the crown of the plant can influence SLA values,
with lower crown leaves typically being larger and having higher SLA values than upper
crown leaves (Sack et al. 2006). However, information about collection location within a
crown is seldom recorded for herbarium specimens.

Given the substantial ecological information that can be obtained by studying SLA
and the limitation imposed by the protocol, the objectives here are to 1) develop models to
predict SLA from dried samples that can extend the temporal, geographical, ecological and
taxonomic scope of the technique allowing us to collect data from dried samples (e.g.,
stored in herbaria), 2) test the generality of these predictive models, and 3) propose the
application of the models as a field standard method.



| hypothesized that 1) SLA values based on area measurements obtained from dried
samples will be smaller than the respective SLA values based on area measurements
obtained from fresh samples. This expectation follows from the fact that approximately 70%
of a leaf’s mass is water (Hopkins 1999), and therefore leaf area will be reduced after the
leaf is dried. 2) As SLA is known to vary with environment (Bongers and Popma 1990,
Whitmore 1996, Ackerly 2004, Sack et al. 2006, Rozendaal et al. 2006), then an accurate
predictive model for SLA using dried samples should have as covariates information about
the environment where the leaf developed (such as position of the leaf in the crown).

| developed four models to test the relationship between SLA from fresh and dried
leaves, where leaf areas were measured on the same leaf. All sample leaves originated from
a dry forest in northern Bolivia. | further tested the generality of the models with an
independent dataset from trees in a Missouri, USA oak-hickory forest.

METHODS
Study site

The bulk of the present study was carried out in a dry forest in the Madidi National
Park (MNP) in Northeastern Bolivia. The dry forest in the MNP is 1418 km? (Killeen et al.
2005) situated within the Tuichi river watershed, with an elevational gradient ranging from
600 to 1500 m. The region is characterized by having a single wet and a dry season per year,
with three extremely dry months from June to August. It has a mean annual temperature of
20.5°C (Navarro 2002) and annual precipitation that varies between 1200 to 1400 mm
(Mueller et al. 2002). The project “Floristic inventory of the Madidi region” established 16 1-
ha plots in 2005. To examine questions of influence of the drying process on SLA, four of
these plots were selected. These plots had high species richness and varied in floristic
composition. They were also the most accessible logistically. The plots are located in Resina
(14°20'0.5"S 68°34'20.6"W, 1034 m), Chirimayu (14°14'47.5"S 68°35'8.6"W, 850 m),
Chaquimayu (14°15'8.7"S 68°31'9.1"W, 795 m), and Buena Hora (14°11'55.5"S
68°38'23.4"'W, 1150 m).
Sampling methods

To make my predictive models broadly applicable, | sampled many species (n = 102),
with 8 replicates within a species (dependent on availability) and 2 samples per individual.
To capture the greatest amount of intra-crown plasticity (Rozendaal et al. 2006, Sack et al.
2006, Hulshof and Swenson 2010), from each individual, | collected one leaf from the top
and one leaf from the bottom of each crown (i.e., sun and shade leaves within a given
crown). Within each plot, all species that had tagged individuals with accessible crown
leaves (via tree climbing) with minimal symptoms of pathogens or covered by epiphylls
(lichens, fungi, liverworts) were sampled.

| harvested leaves that were fully expanded and mature with no obvious signs of
senescence. Top crown leaves were collected from branches most exposed to sunlight, and
bottom crown leaves were collected from lower crown shade branches. In each plot, one to
eight individuals per species were sampled for a total of 541 individuals, 1082 leaves from
102 species across the four plots.

Petioles were included in leaf measures. In the case of compound leaf species, one
leaflet was harvested and treated as a leaf, since a leaflet is functionally equivalent to a
simple leaf (Bongers and Popma 1990, Kraft et al. 2008, Baroloto et al. 2010, Lebrija et al.
2010). To obtain fresh leaf areas, the top and bottom crown leaves were flatted together, if
their size allowed, between Plexiglas sheets with a scale bar and photographs were taken.
All leaves were then placed in envelopes and treated as if they were samples collected as



herbarium specimens. The leaves were pressed and dried with field stoves. Once the leaves
were dried, a second photo was taken to obtain dry leaf area following the same procedures
as when the leaves were fresh. Finally the leaves were placed in an oven for 24 h at 60°C
and weighed to obtain dry mass. Dry mass measures were taken at the Institute of Ecology
at the San Andrés University (La Paz, Bolivia). Leaf area was calculated from the digital
photos of fresh and dried leaves with the program Imagel (http://rsbweb.nih.gov/ij/).
Additionally, | measured with calipers for both fresh and dried leaves, leaf thickness at the
midpoint of the leaf between major veins. Two SLA values were obtained for each collected
leaf, one using the fresh leaf area and dividing it by its dry mass (= SLA.sn), and the second
using the dried leaf area and dividing it by its dry mass (= SLAgyy).

Model fitting

SLAfesh values in the dataset ranged from 0.005 ng'l (Calliandra chulumania
Barneby, Fabaceae) to 0.02 m’g™ (Phyllostylon rhamnoides (). Poiss) Taub., Ulmaceae). My
data cover most of the range of SLA¢es values (0.0007 m’g™ to 0.07 m%g™) sampled around
the globe (GLOPNET; http://www.bio.mqg.edu.au/~iwright/glopian.htm). For analyses, the
data were log; transformed. | ran standard major axis (SMA) regressions using the package
‘smatr’ in the R programming environment (R Development Core Team 2011, http://www.r-
project.org/) to determine the correlation between fresh leaf area and dry leaf area, and
between SLAs.esn Of top crown leaves and SLA;esn of bottom crown leaves.

To examine different models to predict SLAfesh from SLAgy, | used the linear mixed
effects (LME) function available in the R package ‘Ime4’. LME models present a statistical
framework that allows simultaneous incorporation of fixed effects (SLA4, and crown
position) that | hypothesized a prioiri to influence SLAs.sn, as well as random effects (species
and individuals) that may influence values of SLA but are not the focus of the current study.
Another advantage of using LME models is that they allow for unbalanced datasets (e.g.
different sample sizes of individuals within species).

Four models were used to predict SLA.s,. The variables included in the models were
discrete (position of the leaf in the crown, individuals, and species) and continuous (SLAg4).
The discrete variables were nested. SLA4y, was a fixed effect in all models. The crown leaf
position was treated as a dummy variable (1 = top crown leaf and 0 = bottom crown leaf)
that was either considered as a fixed or random effect depending on the model, and
furthermore, considered as a fixed effect to generate a predictive model for SLAf.sh to be
applied on dried samples where the position of collection within the crown is known. On the
other hand, it was considered as a random effect to generate a model to predict SLA.s, for
those dried samples that do not have information about where in the crown they were
collected. Species and individuals were considered as random factors in all models.

Models 1 and 2 were constructed to predict SLAf.s, from dried samples that do not
require information about where in the crown the leaves were collected (Table 1). Model 1
assumes that to accurately estimate the parameters of the model, position of the leaf in the
crown should be added as a random effects term because it influences the variability of leaf
traits and as a consequence produces variation in SLA (Cornelissen et al. 2003, Rozendaal et
al. 2006, Sack et al. 2006, Hulshof and Swenson 2010). This model has added species as a
random effect because SLAs.sn values have a high interspecific variation (Hulshof and
Swenson 2010). Model 2 applies the same scenario as model 1 but has added individuals as
a random effect assuming that incorporating intra-species variation of SLA.s, in the model
will increase accuracy. Models 3 and 4 were built to predict SLAsesn from dried samples that
have information about where the leaves were collected in the crown (Table 1); position of




the leaf in the crown in both models was included as a fixed effect. Species was added as a
random effects term in both models, and model 4 included individuals as a random effect.

Table 1. Candidate models. SLAs.s, = fresh leaf area/dry mass (m2 g'l), SLAgy = dry leaf
area/dry mass (m? g"), LP = leaf position in the crown, species = names of species, and
individuals = number of individuals. The asterisk denotes that the variable was considered a
random effects term in the model.

Model 1 logSLA¢resh = a + blogSLA,, + species* + LP*
Model 2 logSLA¢resh = a + blogSLAy, + species* + individuals™ + LP*
Model 3 logSLAfresh = a + blogSLAgy, + CLP + species™
Model 4 logSLAfresh = a + blogSLA4y, + cLP + species*+ individuals*

Model selection

Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) (Akaike
1974) were used for model selection. AIC is well suited for situations where the predictive
capacity of the model is important, because AIC evaluates the likelihood of each model in
the set, taking into account how well it fits the data, but also penalizing for adding model
parameters (Burnham and Anderson 2002, Hilborn and Mangel 1997). BIC is a criterion for
model selection that is based on the likelihood function. BIC also introduces a penalty for
the number of parameters in the model, but this penalty term is larger in BIC than in AIC
(Bhat and Kumar 2010). The model selection criterion in AIC and BIC is to find the lowest
value (Hilborn and Mangel 1997, Bhat and Kumar 2010). In addition to AIC and BIC, | used
analysis of variance (ANOVA) to compare fit between nested models (i.e., Models 1 versus 2,
and Models 3 versus 4).

| estimated 95% confidence regions for the parameters in each of the models
selected according to AIC and BIC by generating sampling distributions applying the Gibbs
sampling algorithm of Markov Chain Monte Carlo (MCMC) methods (Manly 1997). | used
package ‘Imed4’ to run 1000 simulations, each having 1000 iterations. Only parameter
estimates obtained in the 1000™ iteration of each simulation were kept as part of the
sampling distributions (Manly 1997).
Model testing

My objective was to develop an accurate model to predict SLAsesn from dried leaf
samples. To determine if the models could be used to predict SLAses, from dried leaf
samples for any plant species (not just for species from the Bolivian dry forests where |
worked), | sampled plants from a temperate deciduous oak-hickory forest at Washington
University in St. Louis’ Tyson Research Center located in Eureka, MO (USA). | collected leaves
from 5 individuals of Quercus alba L., Fraxinus americana L., Celtis occidentalis L., Lonicera
japonica Thunb. Ex Murray, and Juglans nigra L. For each individual, | collected one leaf from
the top (sun exposed) and one leaf from the bottom (shade) of the crown. Leaves were
treated identically to the Bolivian leaves with all processing occurring at the University of
Missouri-Saint Louis. Predicted SLAses, Was obtained by applying the models constructed
from the Bolivian samples. To determine the degree to which predicted SLAf.s, was
determined by the models correlated with actual SLAs.sn, | performed standard major axis
(SMA\) regression of actual SLAsesn onto predicted SLAsesn by each model using the R package
‘smatr’. | expected that if the predictive models generated were accurate the intercept of
the regression would not deviate significantly from zero and the slope would not deviate
significantly from one.



RESULTS

Variance in SLA¢es, values from the Bolivian dry forest was mainly explained by
interspecific differences (50.6%) with smaller contribution from intraspecific differences
(19.7%), and lastly 30% of variation was attributable to intra-individual differences. While
intra-individual variation was high, it should be remembered that samples within an
individual were selected to represent the most extreme values. When regressing SLA of top
crown leaves onto SLA of bottom crown leaves, the slope (b = 0.9) was significantly different
from one (P < 0.001), and the intercept (a = -0.2) was significantly different from zero (P <
0.001). Similarly, the slope (b = 1.12) of the regression of fresh leaf area onto dry leaf area
was significantly different from one (P < 0.001), and the intercept (a = 6.25e-5) was
significantly different from zero (P = 0.003) (Figure 1). Interestingly, ~14% of the leaves
gained leaf area during the drying process. Additionally, | found that the variation of leaf
thickness had no significant relation with SLA variation (data not shown).

Four candidate models were generated to predict SLA for dried leaves. Models 1
and 2 were built to predict SLA for dried samples that lack information about where in the
crown they were collected (a situation typical for herbarium samples). The lower AIC and
BIC values and highly significant ANOVA indicated that model 2 had more empirical support
than the other candidate model (Table 2). Models 3 and 4 were built to predict SLA for dried
leaf samples that have information about where in the crown the leaves where collected.
The AIC and BIC values and the highly significant ANOVA indicated that model 4 had higher
empirical support than model 3 (Table 2). | conclude that the predictive models (2 and 4)
that include species and individuals as random effects were more accurate models to
predict SLA.

| compared the two selected models (2 and 4) to gauge the importance of
information on crown position when it is available, using AIC, BIC and ANOVA. Model 4
performed significantly better (P <0.001; model 4 AIC -1470.1, BIC -1440.2) than model 2
(AIC -1460.2, BIC -1430.3). These results suggest that a more accurate prediction of SLA for
samples from MNP is obtained from dried leaf samples when it is known where in the crown
the samples were collected.

Table 2. Estimated parameters (as denoted in Table 1) of the candidate models developed
for 109 species from Madidi National Park, Bolvia. Including Akaike information criterion
(AIC), Bayesian information criterion (BIC), and the P-value obtained in the ANOVA.

Models a b c AIC BIC ANOVA (P-value)
Model 1 -0.19 0.87 -3111.3 -3086.4

Model 2 -0.17 0.88 -3269.1  -3239.2 <2.2e-16

Model 3 -0.20 0.87 0.04 -3120.6  -3095.7

Model 4 -0.18 0.88 0.04 -3279.2  -3249.3 <2.2e-16
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Figure 1. The regression between SLAg,, and SLAg.sh for 109 species from Madidi National
Park, Bolivia and 5 species from Tyson Research Center, Eureka, MO, USA. For the Bolivian
data, bottom crown leaves are denoted by dark grey circles and top crown leaves are
denoted by black squares. The solid light grey line corresponds to model 2, which does not
require position of the leaf in the crown and the black lines correspond to model 4, which
requires the knowledge of position of the leaf in the crown. The solid black line corresponds
to bottom crown leaves, and the dashed black line corresponds to top crown leaves. The
USA data are denoted by the light grey crosses.

To provide an accurate predictive model, | estimated the sampling distribution of
the parameters in the models to determine the confidence region. | obtained a sample from
the Bayesian posterior distribution of the parameter estimates (a and b) for both selected
models using MCMC methods. For Model 2, a high number of points were concentrated
near the mean point (a = -0.17, b = 0.88) (Table 3). For Model 4, a high number of points
were concentrated near the mean point (a = -0.19, b = 0.88). The bivariate distribution of
the 10000 parameter estimates for Models 2 and 4 were positively correlated, the
covariance of the parameters was also positive (Table 3) indicating that a increases with
increasing b.



Table 3. Mean, variance and covariance values of the samples generated from the Bayesian
posterior distribution of the parameters (a and b) for models 2 and 4 using MCMC methods
for 109 species from Madidi National Park, Bolivia.

Models Mean of a Varianceofa Meanofb Variance of b Covariance of a and b

Model 2 -0.17 0.006 0.88 0.00015 0.0003
Model 4 -0.19 0.006 0.88 0.00015 0.0003

The third objective of this study was to propose the application of these predictive
models as a field standard. To accomplish this, | applied the models obtained from data
gathered in Bolivia to data collected in a temperate deciduous oak-hickory forest at
Washington University at St. Louis’ Tyson Research Center in Eureka, Missouri, USA, and
determined the degree to which predicted SLAy.s, correlated with actual SLAses. The range
of SLA.sn for samples collected in the USA were within the range of SLA values for samples
collected in Bolivia (Figure 1).

When regressing the actual SLAf.s, onto predicted SLAsesn, both predictive model
regressions (from Models 2 and 4) had slopes not significantly different from one, intercepts
not significantly different from zero, and R?> > 0.80 (Table 4, Figure 2). Additionally, |
regressed SLAsesn top crown leaves onto SLAsesh bottom crown leaves from the experiment,
and | found that they were not significantly different from a slope of one and an intercept of
zero (slope = 1.08, P = 0.7; intercept = 0.09, P = 0.8). From these results, | concluded that
model 2 predicts SLAs, for dried leaf samples more accurately than model 4.

Table 4. Results from the standard major axis (SMA) regression of actual SLAgesn ONto
predicted SLAsesn for 5 species from Tyson Research Center, Eureka, MO, USA. The 95%
confidence intervals are given in parenthesis (Clhigh—Cliow).

2

Model Intercept Slope R
2 0.20 (-0.02—0.42) 1.08 (0.96—1.22) 0.84
4 0.23 (-0.02—0.49) 1.11(0.97—1.26) 0.80
DISCUSSION

SLA is an easy to measure functional trait that provides insight into leaf allocation
and function. The main drawback of the existing SLA protocol is the requirement for
measures of fresh leaf area, limiting the types of samples that can be used. In this study,
using samples from a Bolivian dry forest, | generated two models to predict SLA from dried
leaf samples. One model requires information about where in the crown the leaf was
collected, while the other model does not require knowledge of leaf position. The accuracy
of the models as a global standard were tested on data collected in a very different forest, a
temperate deciduous oak-hickory forest near St. Louis, MO, USA. While both models
performed well, the simpler model — not requiring information about crown position
(model 2) — provided the best prediction of SLA. | believe that | have established models
that should be readily applicable to other datasets. | have also established a protocol that is
easy to follow for studies that would like to make equations specific to their study species.
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Figure 2. The correlation of actual SLAs.esh versus predicted SLA s, for 5 species from Tyson
Research Center, Eureka, MO, USA. Grey circles are values predicted with the model that
requires position of the leaf in the crown (Model 4), and black squares are values predicted
with the model that does not require position of the leaf in the crown (Model 2). The
dashed line is a 1:1 relation between actual log(SLAesn) and predicted log(SLA¢esh). The solid
grey line is the regression line of the relation between actual log(SLA) and predicted
log(SLA¢esn) Which was predicted with the model that requires position of the leaf in the
crown (Model 4) and the solid black line is the regression between actual log(SLAsesn) and
predicted log(SLA.sn) which was predicted with the model that does not require position of
the leaf in the crown (Model 2).

Amendments to the SLA protocol for dry leaf samples

While the standard protocol for SLA (Cornelissen et al. 2003) provides a useful tool
for researchers, | propose the following modifications. These modifications make the
protocol more accessible for researchers working with dried leaf samples (e.g., stored in
herbaria or remote field conditions) to obtain SLA data that they can compare to other
studies. First, in the section What and how to collect? | suggest it is possible to use dried leaf
samples when fresh leaf samples are not available. From dried samples, mature fully
expanded leaves with no herbivore or pathogen damage should be selected avoiding folded
leaves. The targeted leaf should be removed including its petiole and measured following



the current protocol. Second, in the section Measuring | suggest measures of area of the
dried leaf be taken as explained in the measurement of fresh leaf area in the Cornelissen et
al (2003) protocol. After, the leaf should then be placed in an oven at 60 °C for 24 h and
weighed. SLA4, can be obtained by dividing dry leaf area by its dry mass. This value should
be used in the following equation to obtain predicted SLA,

L0g1oSLA = -0.17 + 0.88(Log 10SLAgy)

In cases where leaves can be collected in the field but fresh leaf area cannot be
obtained, the crown position where the samples were collected should be noted. The
samples should be processed as mentioned above, and SLA should be predicted from the
following equation,

LogoSLA = -0.18 + 0.88(Log10SLA4r,) + 0.04(position of the leaf in the crown)

If the leaf was collected from a branch at the top of the crown a value of one should
be used, and if the leaf was collected from a branch at the bottom of the crown, a value of
zero should be used.

Effects of drying on leaf area

Because leaves contain a large amount of water, | hypothesized that SLAy, would be
smaller than SLA. In the dataset, | found that fresh leaf area was significantly greater than
dry leaf area, which was not surprising. While the predicted tendency was found across the
entire dataset, 14% of the collected samples gained rather than lost leaf area during the
drying process. One possible explanation is that leaves that gained area were thicker and
that when pressed while drying they added area. Interestingly, no relationship between
change in leaf area with drying and leaf thickness was found. Furthermore, leaf area
increased in simple and compound leaf species, and from leaves collected from the bottom
and top of the crown. However, | did find that the image quality from those samples that
increased in leaf area as they dried was lower. The program Imagel, which | have used to
measure leaf area, uses a threshold tool to select the object that is going to be measured.
The threshold process can be difficult if the image does not have enough contrast (e.g., if
the leaves are pale, if they have shadows, or if the resolution is low and then edges are hard
to identify) (Davidson 2011). In these cases, the area of the object to be measured can be
under or overestimated. A way to identify problematic leaves is to measure leaf area several
times to obtain a mean and standard deviation for identification and validation.

Leaf crown position

My second prediction was that an accurate predictive model of SLA for dried
samples should have covariates that describe the environment where the leaf developed,
such as position of the leaf in the crown. However, in the results from sampling species from
the temperate deciduous oak-hickory forest, | found that model 2, which was generated to
predict SLA without information on position of the leaf in the crown, was more accurate in
predicting SLA than model 4, which includes leaf position in the crown as a covariate. This
means that leaves for these species from this forest did not differ in SLA for top and bottom
crown leaves. This finding was surprising since bottom and top crown SLA were significantly
different in the dataset from Bolivia, and also Hulshof and Swenson (2010) found similar
results in data collected in a dry forest in Costa Rica. A possible explanation for these
differences could be that temperate deciduous forests in USA are less stratified in their
irradiance within the crowns of trees. Additionally, it should be noted that even for the



Bolivian species model 4 did not lead to large shifts in the model parameters, suggesting it
had a significant but weak influence on SLA. When available, | suggest that both models
should be tested on data for other ecosystems and that it is likely model 4 will be more
accurate in ecosystems where the canopy has greater light stratification.

A second striking finding regarding crown position in the Bolivian forest was that
~42% of the trees had bottom crown leaves (shade leaves) with lower SLA than top crown
leaves (sun leaves). This was further supported by a positive coefficient for crown position in
the models. However, top and bottom crown leaves from the experiment developed in USA
were found to be not significantly different (P = 0.7). These findings do not support the
general trend found in other studies in which sun leaves were reported to have lower SLA
than shade leaves (Rozendaal et al. 2006, Sack et al. 2006, Hulshof and Swenson 2010).
However, other studies have reported species with shade leaves that have lower SLA than
sun leaves (Talbert and Holch 1957, Niinemets and Kull 1994, Carr 2000, Richardson et al.
2000). Based on these different results reported | recommend when possible that
intracrown SLA differences should be evaluated.

Top crown leaves are difficult to collect in tropical forest

Considering that upper crown sun leaves are difficult to collect in most tropical
forests due to their tall stature, standardized methods such as the SLA protocol proposed by
Cornelissen et al. (2003) may be difficult to apply. In most situations, it will be easier to
collect leaves from bottom crown branches exposed to the sun. Sack et al. (2006) have
reported that the variation of SLA between top crown sun leaves and bottom crown sun
leaves is minimal and that more variation is explained by differences in irradiance. They
have found that bottom crown internal leaves (shade leaves) differ strongly from bottom
crown external leaves (sun leaves). Considering these results and the height of tropical
forest trees, | suggest that bottom crown external leaves (sun leaves) may be easier to
collect and bottom crown exterior versus interior leaves likely represent the extremes in SLA
through the crown of the tree. However, it would be useful to explicitly test this
expectation.

In this study, | developed two models that can be used to predict SLA from dried leaf
samples. Both models can readily be applied to dry tropical forests and deciduous
temperate forests. | feel confident that they should be widely applicable across different
study systems. | recommend however that they be validated when possible in other systems
before applying them, (e.g., the importance of crown position for prediction may differ). A
nice application of these models is that they allow data collected from herbarium samples or
from sampled collected in remote locations to be compared to other studies around the
world. For instance, herbarium samples could be used to ask questions about shifts in SLA
over time as a result of climate change. Or herbarium samples can be used to evaluate the
amount of intraspecific variation across large geographic ranges. These predictive models
extend the temporal, geographical, ecological, and taxonomic scope of SLA studies.
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GRAIN SIZE AND FUNCTIONAL TRAITS IN SPECIES ASSEMBLAGES OF A NEOTROPICAL DRY
FOREST

INTRODUCTION

A long standing question in ecology is how and why so many species coexist.
Explanations have entailed deterministic and stochastic processes. Deterministic processes
are “rules” or “filters” thought to structure species assemblages according to traits that
determine fitness differences among species across environments (Diamond 1975, Weiher
and Keddy 1999, Cornwell et al. 2006). On the other hand, stochastic processes may
structure species assemblages independent of such traits (Hubbell 2001). Uncertainty
remains regarding the importance of these two kinds of process, and how they interact to
structure species assemblages defined at different grain sizes in the landscape (Weiher and
Keddy 1995, Weiher and Keddy 1999, Cavender-Bares et al. 2006, Cavender-Bares et al.
2009, Kraft and Ackerly 2010).

Recent progress in our understanding of species assemblages has occurred through
a focus on functional traits (Shipley 2010) where species assemblages are examined in terms
of morphological, physiological or reproductive traits that are thought to influence fitness;
combinations of these traits define species’ ecological strategies (Grime 1979; Tilman 1988,
Westoby et al. 2002, McGill et al. 2006). Optimal strategies may shift with changes in
environmental settings. Two kinds of deterministic processes have been considered in this
trait-based approach, namely the habitat filtering model and the inter-specific competition
model. Both invoke inter-specific differences in ecological strategies (Kraft et al. 2008), but
they predict distinct effects on the distribution of functional traits of co-occurring species
(Cornwell et al. 2006, Cavender-Bares et al. 2006).

In the habitat filtering model, it is assumed that only species having functional traits
within a particular range of values can tolerate the environmental conditions that occur in a
given site (the assumption being that environmental conditions are relatively homogeneous
within the site). In other words the environment filters the regional pool of species, limiting
the composition of an assemblage to a subset of species that possess functional traits
conferring high fitness in that environment. Consequently, it is expected that functional
traits values for species co-occurring in any given assemblage range within a limited trait
space relative to the trait space defined by all species in the regional pool (van der Valk
1982, Keddy 1992, Weiher et al. 1998, Weiher and Keddy 1999, Cornwell et al. 2006,
Cornwell and Ackerly 2006).

In the inter-specific competition model, species with similar functional trait values
are assumed to compete strongly and, therefore, frequently exclude each other from a
given species assemblage. Such competitive exclusion is thought to happen when there is
asymmetrical competition (i.e., there is a competitively superior species, MacArthur and
Levins 1967), but also under scenarios involving unstable co-occurrence, presence of natural
enemies, and priority effects (Chase and Leibold 2003). Despite the variety of scenarios for
competitive exclusion allowed by this model, a constant element is that competitive
exclusion is particularly likely between species with similar functional trait values. Therefore,
it is expected that functional trait values for co-occurring species in any given assemblage be
evenly dispersed in the trait space (Cornwell and Ackerly 2009, Kraft and Ackerly 2010).

An alternative to the deterministic models above is the stochastic, neutral or null
model in which the spatial distribution of species is not limited by environmental conditions.
Instead species are ecologically equivalent so that competitive exclusion can occur but the
winner is not determined based on similarity in functional trait values (Hubbell 1997,



Hubbell 2001). The neutral model relies on the assumption that dispersal and demographic
processes have prominent roles in structuring species assemblages (Hubbell 2001). It
predicts that the distribution of functional trait values in a species assemblage is not
different from random draws of trait values from the regional species pool.

The relevance of the different models is thought to be contingent on the spatial
grain size used to define species assemblages (Swenson et al. 2006, Cavender-Bares et al.
2006, Kraft and Ackerly 2010). In particular, one hypothesis (hereafter referred to as
hypothesis 1) suggests that at large grain sizes (called “habitat scale”) environmental filters
govern the organization of species assemblages, while biotic interactions such as
competitive exclusion have the greatest impact at small grain sizes (called “neighborhood
scale”) (Hardin 1966, Roughgarden 1983, Tilman 1994, Weiher and Keddy 1995, 1999, Webb
et al. 2002, Swenson et al. 2007, Cavender-Bares et al. 2009, Kraft and Ackerly 2010).

| propose an alternative working hypothesis (hereafter referred to as hypothesis 2)
according to which the relevance of the habitat filtering model depends on the relationship
between grain size and spatial heterogeneity of the environmental conditions within the
area ascribed to species assemblages. | take for granted that the spatial heterogeneity
increases with area (Williamson 1987, Bell et al. 1993, Storch et al. 2002, Bridges et al.
2007). Under this assumption, hypothesis 2 suggests that environmental filters are
particularly important in the organization of species assemblages defined at small grains,
because species assemblages at these sizes would occur within a fairly homogeneous
environment that filters the regional pool of species in a consistent fashion. On the other
hand, species assemblages defined at large grains would encompass higher environmental
heterogeneity (microtopography, soil nutrients, sun exposure, slope, water availability) and
thus may not be structured by any consistent effect of habitat filtering. As in the inter-
specific competition model above, | also expect biotic interactions to most strongly affect
species assemblages defined at small grains, because in such assemblages individuals may
competitively interact more readily than at larger grains. In short, according to hypothesis 2
and in contrast to hypothesis 1, the importance of both, the habitat filtering model and the
inter-specific competition model, will increase as the grain size used to define species
assemblages decreases.

A recent study, partially consistent with both hypotheses, of Amazonian tree species
assemblages defined plot grain sizes from 25 to 10000 m? (0.0025 to 1 ha) (Kraft and Ackerly
2010). It showed evidence of habitat filtering across plots of all sizes, but the evidence of
competitive exclusion was restricted to relatively small plots, ranging from 25 to 400 m?
(0.0025 to 0.04 ha). However, power to detect the pattern predicted by the model
emphasizing competitive exclusion decreased as plot size increased. An earlier study in the
same Amazonian forest defined tree species assemblages using 400 m? (0.04 ha) plots, and
found strong evidence of habitat filtering and competitive exclusion (Kraft et al. 2008).
These results indicate that topographic habitats (ridgetops and valley bottoms) support
species assemblages with divergent strategies. Beyond these findings, all derived from a 25
ha plot in a lowland Amazonian forest of Ecuador, there seems to be little work on how the
models of habitat filtering and competitive exclusion may differentially apply to species
assemblages at various grain sizes.

Here | test predictions from the two hypotheses above by examining the
distribution of functional traits across tree species assemblages defined according to non-
contiguous plots (24.1 ha in total) scattered across a tropical dry forest in the Bolivian
Andes.



METHODS
Study site

The Madidi National Park (MNP) comprises an area of 18,957 km? in northwestern
Bolivia (SERNAP 2011). The park includes 1,442 km? of dry forest within an elevational
gradient of 600—1500 m; approximately 700 km? is pristine forest. This park is thought to
hold one of the largest and best conserved areas of dry forest in the Neotropics (Kessler and
Helme 1999). The closest meteorological station is located 50 km away, in Apolo at 1430 m
of elevation, with a mean annual temperature of 20.5 °C (Navarro 2002). The mean annual
precipitation ranges from 1200 to 1400 mm and there are 3.5 dry months per year (Mieller
et al. 2002).

The dry forest at MNP lies along the watershed of the Tuichi River and its
tributaries, the Machariapo and Resina Rivers (Cayola et al. 2007). It is surrounded by
Amazonian forest at lower elevations and humid Andean forests at higher elevations. Both
evergreen and deciduous species can be found in the dry forest, leading to a mix of
deciduous and semi-deciduous dry forests. At least 1119 vascular plants occur in the area
(Cayola et al. 2010).

| tested predictions derived from each hypothesis using data on 16 permanent plots
(1 ha) and 81 non-permanent plots (0.1 ha) established by the “Floristic Inventory of the
Madidi region” project from 2003 to 2005. Individuals with 210 cm of diameter at breast
height (dbh; 130 cm above the ground) were censused in permanent plots and individuals
with 22.5 cm of dbh were censused in non-permanent plots. For every individual found in
permanent and non-permanent plots, height and dbh were recorded. Species occurrence in
each plot was documented with herbarium vouchers deposited in the National Herbarium of
Bolivia and in the Missouri Botanical Garden (MBG).

Species assemblages

| defined species assemblages using two grain sizes; large and small grain sizes were
defined separately for permanent and non-permanent plots. The larger grain sizes were the
sizes of the entire plot: 1 ha for permanent plots and 0.1 ha for non-permanent plots. The
smaller grain sizes were defined by the minimum sizes of adjacent and non-overlapping
square quadrats within the plots defined during plot set up: 20 x 20 m (0.04 ha) quadrats
within permanent plots and 10 x 10 m (0.01 ha) quadrats within non-permanent plots. To
avoid non-independence among species assemblages defined by small grain sizes within a
single plot (i.e., non-independence among 25 0.04 ha quadrats within a single 1 ha
permanent plot, and among the 10 0.01 ha quadrats within a single 0.1 ha non-permanent
plot), | randomly selected only one quadrat within each plot, and tested the predictions of
interest using only data on the species assemblages defined by these randomly selected
guadrats.

Trait sampling

Three functional traits were considered in the analysis: specific leaf area (SLA, m’g’
1), maximum height (Hna, M), and maximum diameter (Dnya, M). These traits were chosen
because they are components of important plant ecological strategies (Westoby et al. 2002,
Ackerly 2004). H.x and Dyax represent the competitive ability to capture light (Falster and
Westoby 2005, Maharjan et al. 2011) and growth strategy (Anten and Hirosel 1999). SLA
represents strategies of carbon investment and gain (Wright et al. 2004, Cornwell and
Ackerly 2010).

At the time of plot set up, height and dbh were obtained for all individuals in the
plot. Maximum sizes (Hmax and Dpmay) Were obtained following the method suggested by King
et al. (2006). The method is based on the abundance of species. To estimate the maximum



size of common species (>500 individuals), the largest three values were averaged. For less
common species (100-500 individuals), the two largest values were averaged, and for rare
species (<100 individuals) the largest observed value were used.

SLA values were obtained from herbarium specimens collected in the dry forest of
the MNP and deposited at MBG. To obtain SLA for freshly collected samples from dry
samples, | applied the predictive model developed by Torrez et al. (Chapter 1, this thesis). A
mature expanded leaf without herbivory was excised (including its petiole) from an
herbarium specimen. For species with compound leaves, multiple leaflets per specimen
were excised (Hulshof and Swenson 2010). An image was captured for each leaf/leaflet to
obtain dry leaf area using the program Imagel (http://imagej.nih.gov/ij/). Leaves were
placed in an oven at 60°C for 24 h and then weighed to obtain dry mass. Dry leaf area per
dry mass entered as a predictor variable in the model developed by Torrez et al. (Chapter 1)
to obtain fresh leaf area per dry leaf mass. For species with compound leaves, | obtained SLA
values for every leaflet and then calculated a mean SLA value for each specimen. Mean SLA
values were obtained from at least 10 specimens for each species (Hulshof and Swenson
2010). However for a few rare species (120 species), mean SLA values were obtained using
fewer specimens. In those cases, | excised more than one leaf per herbarium specimen.

Dmax and H.x values were obtained for all the species (n = 463), however SLA values
were obtained only for those species that had available specimens at the MBG (n = 319).
Trait values were log;o transformed for analysis.

Species pools

| generated two types of regional species pools. One type, hereafter referred to as
entire species pool, was generated separately for permanent and non-permanent plots, and
included all species occurring in permanent and non-permanent plots, respectively. A
second type of species pool was defined to detect a pattern consistent with inter-specific
competition in a background of habitat filtering (Kraft and Ackerly 2010). | referred to this
second type of species pool as species pool in a background of habitat filtering. 1t was
generated separately for each species assemblage, and included only species that a) were in
the entire species pool and b) had trait values within the range of trait values observed in a
given species assemblage. For example, if SLA values range from 0.005-0.05 m’g™in the
entire species pool, and from 0.005-0.01 m’g™ in a given species assemblage A, then the
species pool in a background of habitat filtering for the species assemblage A is composed of
species in the entire species pool that have SLA values within 0.005-0.01 m%g™.

Detecting non-random patterns of trait dispersion

For each observed species assemblage, trait dispersion patterns were compared to
null expectations estimated based on 999 random species assemblages. Each of these
random assemblages had species richness equal to the species richness in the respective
observed species assemblage and was created by a null model that drew species from the
regional species pool irrespective of species trait values. In three versions of this null model,
the probability of including any species from the species pool in a particular random
assemblage was determined by presence-absence, abundance, and frequency of occurrence
across plots (Kraft et al. 2008). Species from observed and null species assemblages were
matched to their respective SLA, H,..x, and D values to calculate five metrics sensitive to
deterministic patterns of trait dispersion. | compared these metrics between observed and
null species assemblages to detect non-random patterns of trait dispersion. Following Kraft
et al. (2008), species with missing SLA values were included in species pools and null models,
but excluded from the calculation of SLA dispersion metrics.



| used four metrics to detect patterns of competitive exclusion (even dispersion of
trait values) in species assemblages. First, | used kurtosis to measure the peakedness of trait
values in species assemblages. This metric represents one aspect of how trait values are
spread in trait space. If competitive exclusion structures the observed species assemblages,
then kurtosis in the distribution of trait values in the observed species assemblages would
be smaller than that of the respective random assemblages (Stubbs and Wilson 2004, Kraft
et al. 2008, Cornwell and Ackerly 2008, Kraft and Ackerly 2010). Second, | measured the
distance in trait space from each species to its nearest neighbor (NN) in the assemblage. |
used the standard deviation of the NN values (SDNN) as a second metric to detect patterns
of even dispersion of trait values expected according to the model emphasizing competitive
exclusion. If competitive exclusion structures the observed species assemblage, then SDNN
in the observed species assemblages would be smaller than that in the respective random
assemblages (Ricklefs and Travis 1980, Stubbs and Wilson 2004, Kraft et al. 2008, Kraft &
Ackerly 2010).

| used two other metrics to detect patterns of even spacing predicted by the model
of competitive exclusion against a background of habitat filtering. One of them was
obtained by dividing SDNN by the range of trait values present in the species assemblage
(henceforth SDNNr) (Stubbs and Wilson 2004, Kraft and Ackerly 2009, Kraft and Ackerly
2010). To obtain the last metric, | calculated all neighbor distances (ND) as the difference
between adjacent species in the assemblage, and then quantified the standard deviation of
the ND divided by the range of trait values in the species assemblage (henceforth SDNDr)
(Ingram and Shurin 2009, Kraft & Ackerly 2010). If competitive exclusion structures observed
species assemblages within a background of habitat filtering, then SDNNr and SDNDr in the
observed species assemblages would be smaller than that in the respective random
assemblages (Stubbs and Wilson 2004, Ingram and Shurin 2009, Kraft and Ackerly 2009,
Kraft and Ackerly 2010).

| used the trait range (TR) of a species assemblage as a metric to detect patterns of
restricted trait dispersion predicted by the model of habitat filtering. This metric is the
difference between the maximum and minimum trait values present in the species
assemblage. If habitat filtering structures species assemblages, then the range of trait values
in observed species assemblages would be smaller than that in the respective random
assemblages (Stubbs and Wilson 2004, Cornwell et al. 2006, Ingram and Shurin 2009, Kraft
and Ackerly 2009, Kraft and Ackerly 2010).

| used two levels of analysis to determine if values of the five metrics of trait
dispersion (kurtosis, SODNN, SDNNr, SDNDr and TR) for the observed species assemblages
deviated from those in the respective random assemblages as expected from deterministic
models emphasizing competitive exclusion and habitat filtering. The first is the analysis at
the level of single species assemblages. To determine if single species assemblages deviated
significantly from random species assemblages, | examined whether the value of each of the
five metrics of trait dispersion fell below the fifth percentile of the distribution of the
metrics for the respective 999 random species assemblages. The results of this level of
analysis were summarized as the percentage of species assemblages at each grain size that
differed (relative to the fifth percentile, equivalent to a one-tailed test with alpha = 0.05)
from random expectation. The second level of analysis focused on the difference in metrics
of trait dispersion between each species assemblage and the central tendency of the
respective 999 random species assemblages, aggregated across plots at each grain size. In
particular, | used Wilcoxon signed rank tests to determine if the values of the metrics of trait



dispersion for the observed species assemblages deviated from those in the respective
random assemblages.
Testing predictions from the two hypotheses

Hypothesis 1 predicts that the effect of habitat filtering on the structure of species
assemblages is higher at a larger than at smaller grain sizes and that the effect of
competitive exclusion is higher at smaller than at larger grain sizes. In contrast, hypothesis 2
predicts that both habitat filtering and competitive exclusion affect the structure of species
assemblages more heavily at small than at large grain sizes. | used two criteria to examine
support for these predictions. First, to support a given prediction, | determined if there was
a nonrandom pattern of trait dispersion, consistent with the prediction, at the grain size
where the hypothesis predicts a deterministic process (habitat filtering or competitive
exclusion) has greater importance. Methods in the previous section describe how non-
random patterns of trait dispersion were detected. Second, if the first criterion was met,
then | examined if the deviation from a random pattern of trait dispersion was higher at the
grain size at which the hypothesis predicts the strongest effect of the deterministic process.
For this purpose, | used a Wilcoxon signed rank tests to compare small and large grain size in
terms of standardized effect size of trait metrics sensitive to deterministic patterns of trait
dispersion (see above description of these metrics). Standardized effect sizes are the
difference between the observed metric and the average value of the metric for null species
assemblages, divided by the standard deviation of the metric for the null species
assemblages.

RESULTS
Trait based species assemblage structure

Results from the null model weighted by frequency of occurrence were more
conservative than results obtained from the null model weighted by abundance or
presence-absence (Appendix, Table 1A, 1B, 1C). Thus | report only results obtained from the
null weighted by frequency of occurrence.

Evidence of deterministic processes was found at small and large grains at 1 ha and
0.1 ha plots (Table 1, Figure 1) for the three functional traits analyzed. The range of SLA and
Hmax Values were significantly smaller than the null expectation at large grain size of 0.1 ha
plots (Tablel, Figure 1A), suggesting habitat filtering structured these species assemblages.
Evidence of competitive exclusion was found through analysis of kurtosis for SLA at small
and large grain sizes of 0.1 ha plots, and for D« at the large grain size of 0.1 ha plots (Table
1, Figure 1B). Patterns of even spacing of trait values for H,,,, were found through analysis of
SDNN at large grains of 0.1 and 1 ha plots (Table 1, Fig 1 C). Similar patterns were found for
SLA with the analysis of SDNN at both grain sizes of 0.1 ha plots, suggesting that competitive
exclusion structured those species assemblages.

In a background of habitat filtering, evidence of competitive exclusion was found
through the analysis of SDNDr with SLA at small grain sizes of 0.1 ha plot (Table 1, Figure 1E).
No evidence of competitive exclusion was found with the analysis of SDNNr (Table 1, Figure
1D).

When observed species assemblages were considered individually to detect
deterministic processes through the analysis of range, kurtosis, SDNN, and SDNNr, a few
species assemblages had significant P-values. Similarly, only a few observed metric values
fell below the 5% extreme of the null distribution (Table 1). However, through the analysis
of SDNDr for SLA more than 50% of the individual species assemblages had significant P-
values (Table 1). Although many individual species assemblages were indistinguishable from



null species assemblages, grain size-wide tests were statistically significant, which is
evidence against a random assembly of co-occurring species.
Effect of nonrandom processes at different grain sizes

| found that range for SLA and H,,, met the first criterion to test the prediction of
habitat filtering from hypothesis 1 (Table 1). The effect of habitat filtering at large grain sizes
was not significantly greater than at small grains for SLA (Table 2, Figure 2 and 3). Thus, it
did not meet the second criterion. However, the effect of habitat filtering at large grain was
significantly greater than at small grain sizes for Hna, which met the second criterion. |
conclude that | found support for the prediction that habitat filtering has greater
importance in structuring species assemblages at large grains.

Additionally, | found that SDNDr, SDNN, and kurtosis for SLA met the first criterion
to test the prediction of competitive exclusion from the two hypotheses (Table 1). Through
the analysis of SDNDr, | found that the effect of competitive exclusion at small grains was
significantly greater than at large grains (Table 2, Figure 4), which met the second criterion.
However, through the analyses of SDNN and kurtosis, | found that the effect of competitive
exclusion at small grains was not significantly greater than at large grains (Table 2, Figure 4),
which did not meet the second criterion. Therefore, | found support for the prediction that
competitive exclusion has greater importance in structuring species assemblage at small
grain sizes.

Table 1. P-values of Wilcoxon signed rank test are reported for small and large grain sizes of
1 and 0.1 ha plots for three functional traits. Numbers in parenthesis are percentage of
individual assemblages that had observed metric values below the fifth percentile of the null
distribution of metric values. The asterisk denotes grain sizes that met the first criterion.

Trait Grainsize Habitat filtering Competitive exclusion
(ha) Range Kurtosis SDNN SDNNr SDNDr
SLA
1 0.3 (0) 0.2 (0) 0.2 (6.3) 0.5(6.3) 1(6.3)
0.04 0.4 (0) 0.9 (0) 0.4 (0) 1(0) 0.2 (19)
0.1 0.01 (5)* <0.001 (8.6)  0.002 (6.2) 1(0) 1(11.1)
0.01 0.06 (6.2) <0.001 (5)*  <0.001 (4)*  1(6.2) < 0.001 (56.8)*
Dmax
1 0.9 (12.5) 0.3 (18.8) 0.4 (6.3) 0.43 (6.3) 0.13(12.5)
0.04 0.97 (0) 0.59(12.5) 0.91 (0) 0.84(0) 0.59(0)
0.1 0.45 (3.7) 0.03 (3.7) 0.84 (6.2) 1(4.9) 1(1.2)
0.01 0.16 (6.2) 0.32(2.5) 0.07 (3.7) 0.9(2.5) 0.7(1.2)
Hmax
1 0.11 (25) 0.08 (0) 0.008 (18.8) 0.25(6.3) 0.74(0)
0.04 0.47 (6.3) 0.81 (0) 0.97 (6.3) 1(0) 0.94 (0)
0.1 <0.001 (7.4)* 0.47 (4.9) 0.03(11.1)  0.59(8.6) 0.96(7.4)

0.01 0.16 (9.9) 0.11 (11.1) 0.14 (11.1) 0.2 (2.5) 0.5(1.2)
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Figure 1. Summary of trait test at small grain sizes (SGS) and large grain sizes (LGS) at 1 and
0.1 ha plots. Black filled circles indicate that Wilcoxon signed rank test had p-values <0.05.
SLA is specific leaf area, Dmay is maximum diameter and H,,.xis maximum height. Large and
small grain sizes of 1 and 0.1 ha plots are on the x axis, the first two columns on the left of
each graph belong to 1 ha plot, and the second two are large and small grain sizes.
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Figure 2. Range effect size values of small (0.01 ha) and large (0.1 ha) grain sizes of SLA at
0.1 ha. A. Effect size distribution of values in relation to the number of species assemblages
of large grain size at 0.1 ha. B. Correlation between range effect size values of small and
large grain at 0.1 ha. Dashed line indicates a 1:1 relation between range effect size values of
small and large grain at 0.1 ha. C. Frequency distribution of the difference between range
effect size values of small grains and range effect size values of large grains. Dashed line
indicates the mean of the difference between range effect size values of small grains and
range effect size values of large grains. D. Effect size distribution of values in relation to the
number of species assemblages of small grain size at 0.1 ha.
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Figure 3. Range effect size values of small (0.01 ha) and large (0.1 ha) grain sizes of Hp,s at
0.1 ha. A. Range effect size distribution of values in relation to the number of species
assemblages of large grain size at 0.1 ha. B. Correlation between range effect size values of
small and large grain at 0.1 ha. Dashed line indicates a 1:1 relation between Range effect
size values of small and large grain at 0.1 ha. C. Frequency distribution of the difference
between range effect size values of small grains and range effect size values of large grains.
Dashed line indicates the mean of the difference between range effect size values of small
grains and range effect size values of large grains. D. Range effect size distribution of values
in relation to the number of species assemblages of small grain size at 0.1 ha
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Figure 4. SDNDr effect size values of small (0.01 ha) and large (0.1 ha) grain sizes of SLA at
0.1 ha. A. SDNDr effect size distribution of values in relation to the number of species
assemblages of large grain size at 0.1 ha. B. Correlation between range effect size values of
small and large grain at 0.1 ha. Dashed line indicates a 1:1 relation between SDNDr effect
size values of small and large grain at 0.1 ha. C. Frequency distribution of the difference
between SDNDr effect size values of small grains and SDNDr effect size values of large
grains. Dashed line indicates the mean of the difference between SDNDr effect size values of
small grains and SDNDr effect size values of large grains. D. SDNDr effect size distribution of
values in relation to the number of species assemblages of small grain size at 0.1 ha.
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Figure 5. SDNN effect size values of small (0.01 ha) and large (0.1 ha) grain sizes of SLA at 0.1
ha. A. SDNN effect size distribution of values in relation to the number of species
assemblages of large grain size at 0.1 ha. B. Correlation between range effect size values of
small and large grain at 0.1 ha. Dashed line indicates a 1:1 relation between SDNN effect size
values of small and large grain at 0.1 ha. C. Frequency distribution of the difference between
SDNN effect size values of small grains and SDNN effect size values of large grains. Dashed
line indicates the mean of the difference between SDNN effect size values of small grains
and SDNN effect size values of large grains. D. SDNN effect size distribution of values in
relation to the number of species assemblages of small grain size at 0.1 ha.



g
o © - - ©
N o
R o < -
k: N °
Y N ] - N ] “'_
P 8 . ®e -
£ <] 221 SN
S D ¢
<o £
3 T T T T T 1
0 2 4 6 8 10 -3 -1 01 2 3
Number of sp assemblages (0.1 ha) Kurtosis effect size (0.01 ha)
©
e
o
_ o S}
0
© | >
<) | 3
5§ © 2
g b 8
o} < l %
L ©
AN [ H &
"o :
| T | T T | o)
4 3 -2 1 0 1 2
=)
Effect size (0.01 ha)-Effect size (0.1 ha) < Kurtosis effect size

Figure 6. Kurtosis effect size values of small (0.01 ha) and large (0.1 ha) grain sizes of SLA at
0.1 ha. A. Kurtosis effect size distribution of values in relation to the number of species
assemblages of large grain size at 0.1 ha. B. Correlation between range effect size values of
small and large grain at 0.1 ha. Dashed line indicates a 1:1 relation between Kurtosis effect
size values of small and large grain at 0.1 ha. C. Frequency distribution of the difference
between Kurtosis effect size values of small grains and Kurtosis effect size values of large
grains. Dashed line indicates the mean of the difference between Kurtosis effect size values
of small grains and Kurtosis effect size values of large grains. D. Kurtosis effect size
distribution of values in relation to the number of species assemblages of small grain size at
0.1 ha.



Table 2. P-values of Wilcoxon signed sample rank test are reported for the comparison of
effect size between small and large grains at 0.1 ha plots. H1 denotes that the analysis was
done to test grain size the prediction of habitat filtering from hypothesis 1.

Trait Plot (ha) Habitat filtering Competitive exclusion
Range (H1) SDNDr SDNN Kurtosis
SLA 0.1 0.2 <0.001 0.5 0.2
H max 0- 1 0-02
Discussion

The present study used a functional trait approach to determine whether
deterministic assembly processes structure species assemblages in a species-rich
Neotropical dry forest. | found evidence that deterministic processes (habitat filtering and
competitive exclusion) structured species assemblages in the dry tropical forest of the MNP.
Additionally, | found that habitat filtering had a significantly stronger effect at large grain
sizes than at small grain sizes, and that competitive exclusion had a significantly stronger
effect at small grain sizes than at large grain sizes in structuring species assemblages in the
dry tropical forest of the MNP.

A restricted trait range of SLA and H,,.x was found. This pattern was consistent with
the habitat filtering model. Probably, these trait range patterns found for SLA and H,, can
best be explained by the topographical variation (ridgetops, slopes, and valley bottoms) in
the area. Topography leads to a high variation in soil moisture, light irradiance, and species
deciduousness among ridgetops, slopes, and valley bottoms (Torrez 2008). In the area
ridgetops are characterized by having high light irradiance with lower soil moisture than
slopes and valley bottoms. Generally, woody Cactaceae (such as Opuntia brasiliensis) along
with mostly deciduous tree species can be found in ridgetops. Most trees are shorter with
tough leaves than the trees found in valley bottoms (Torrez 2008). Valley bottoms are
characterized by high soil moisture because of the proximity to rivers; valley bottoms also
have great diversity of lianas, epiphytes, and herbs. Trees with the tallest and highest dbh in
the dry forest are usually found in valley bottoms. Slopes are generally rocky with inclined
and thin trees (Torrez 2008). However, further analysis should be done to support that this
suggested habitat association is occurring in the dry forest of the MNP.

In addition, | found patterns of even trait dispersion that are consistent with the
inter-specific model, which can result from competitive exclusion, natural enemies, or
priority effects. The even trait dispersion of the three traits (SLA, Dmax, Hmax) that | have
analyzed in ecological terms mean that the species assemblages are composed of tree
species with different strategies in light acquisition, and with a multistratified canopy given
the broad distribution of tree heights. Similar patterns consistent with habitat filtering and
competitive exclusion were found in an Ecuadorian moist tropical forest (Kraft et al 2008,
Kraft and Ackerly 2010), and in a Costa Rican dry tropical forest (Swenson and Enquist 2010).

It is particularly interesting that | found evidence of competitive exclusion in more
than 55% of the individual species assemblages, and that in less than 25% of the individual
species assemblages | found evidence of habitat filtering. This finding is striking given that it
was reported that metrics that are used to detect even spacing, such as SDNN, SDNNr,



SDNDr, have low power as species richness increases (Kraft et al. 2010). In addition, metrics
used to detect habitat filtering have high power and are not influenced by changes in
species richness (Kraft et al. 2010), suggesting that analysis of the power of the metrics used
to detect deterministic patterns should be done. These analyses can determine if the
patterns found were produced by effects of habitat filtering that are difficult to detect..

Most of the evidence of deterministic processes was found in 0.1 ha plots, a big
difference between both types of plots that | used for the analyses was the minimum dbh
used to measure individuals during the establishment of the plots. In 0.1 ha plots individuals
with 22.5 cm were collected and in 1 ha plot individuals with 210 cm were collected. This
difference allowed the inclusion of more species in 0.1 ha plots. Apparently, given the
results obtained, most of the evidence of deterministic processes was recovered because of
the presence of species with individuals with <10 cm of dbh in the dataset of 0.1 ha plots.
Studies carried out in Ecuador in a 16 ha plot (Kraft et al. 2008) and in Costa Rica in a 25 ha
(Swenson and Enquist 2009), based on plots where stems with dbh 21 cm and 23 cm were
counted, respectively, found evidence of deterministic processes structuring species
assemblages. Further analysis should be done to determine the importance of the inclusion
of individuals with <10 cm of dbh in analyses of species assemblages.

Through the analysis of trait dispersion of SLA, | found evidence that supports the
prediction that the importance of competitive exclusion increases as the grain size used to
define the species assemblages decreases. This pattern indicates that at small grain sizes
individuals of species assemblages possess traits values more evenly dispersed in the trait
space than at large grain sizes. This finding suggests that biotic interactions (e.g.,
competition), natural enemies, and priority effects may have greater effects in species
coexistence at small grain sizes. It also suggests that SLA may be important in promoting
species diversity and coexistence in dry tropical forests. Kraft et al. (2010) reported a similar
pattern in the moist tropical forest of Yasuni, however their findings were through the
analysis of trait dispersion of seed mass and Day.

| found evidence that supports the prediction that the importance of habitat
filtering increases as the grain size used to define species assemblages increases. This
pattern indicates that at large grain sizes individuals of species assemblages possess traits
values restricted within a range. | found support for this hypothesis using Hma. A similar
study performed in Yasuni found that habitat filtering had a relatively constant effect across
grain sizes with the analysis of SLA, leaf nitrogen, life size, and seed size (Kraft and Ackerly
2010). However, they found significant effects at large grains (from 50 to 100 m?) with wood
density and Dy (Kraft and Ackerly 2010).

To my knowledge the present study is the first to the role of deterministic processes
affecting traits values with non-contiguous plots encompassing a large regional area with
great spatial heterogeneity in a species-rich Neotropical dry forest. The results obtained
indicate that stabilizing processes promote the patterns of species diversity and co-
existence in the dry forest at the MNP in Bolivia. Patterns consistent with competitive
exclusion are evident across grain sizes, but their strength is higher at small grain sizes. On
the other hand, patterns consistent with habitat filtering are important but diffuse across
grain sizes. It will be valuable to perform analysis of the power of the metrics used to detect
deterministic patterns of species assembly, and revisit these analyses as more trait data
become available.
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Appendix

Table 1A. P-values of Wilcoxon signed rank test are reported of abundance weighted null
model, and absence-presence null model for small and large grain sizes of 1 and 0.1 ha plots for
maximum diameter. Numbers in parenthesis are percentage of individual assemblages that
had observed metric values below the fifth percentile of the null distribution of metric

values.
Grain size Habitat filtering Competitive exclusion
(ha) Range Kurtosis SDNN SDNNr SDNDr
Abundance
1 1(6.3) 0.68 (12.5) 0.97 (6.3) 0.91(0) 0.04(12.5)
0.04 0.95 (0) 0.45(6.3) 0.89 (0) 0.96(0) 0.90(0)
0.1 1(2.5) <0.001(8.6) 0.97(4.9) 1(4.9) 1(2.5)
0.01 1(4.9) 0.17 (4.9) 0.64(3.7) 0.78(4.9)  0.21(2.5)
Absence-presence
1 1(0) 0.0013 (6.3)  0.042(6.3) 0.02(6.3) 0.004 (6.3)
0.04 1(0) 0.16 (18.8) 0.96 (0) 0.68(0) 0.68(0)
0.1 1(1.2) <0.001(3.7) 0.97(3.7) 0.97(49) 0.35(3.7)
0.01 1(1.2) 0.25 (2.5) 0.82(3.7) 0.23(8.6) 0.17(2.5)

Table 1B. P-values of Wilcoxon signed rank test are reported of abundance weighted null
model, and absence-presence null model for small and large grain sizes of 1 and 0.1 ha plots for
maximum height. Numbers in parenthesis are percentage of individual assemblages that
had observed metric values below the fifth percentile of the null distribution of metric

values.
Grain size Habitat filtering Competitive exclusion
(ha) Range Kurtosis SDNN SDNNr SDNDr
Abundance
1 0.93 (0) 0.51 (0) 0.08 (6.3) 0.11 (0) 0.84 (0)
0.04 0.77 (0) 0.97 (0) 0.87 (6.3) 1(0) 0.90 (0)
0.1 0.94 (4.9) < 0.001 (8.6) 0.07 (8.6) 0.09 (11.1) 1(1.2)
0.01 0.21 (4.9) 0.004 (13.6) 0.11 (7.4) 1(4.9) 1(2.5)
Absence-presence
1 <0.001 (37.5) <0.001 (68.8) <0.001 (43.8) 0.01 (12.5) 0.001 (6.3)
0.04 0.03 (0) 0.67 (6.3) 0.49 (12.5) 1(0) 0.98 (0)
0.1 <0.001 (7.4) <0.001(6.2) <0.001(13.6) <0.001(14.8) <0.001 (30.9)
0.01 <0.001 (1.2) <0.001(2.5) <0.001(3.7) 0.96 (17.3) 0.77 (2.5)




Table 1C. P-values of Wilcoxon signed rank test are reported for abundance weighted null
model and absence-presence null model for small and large grain sizes of 1 and 0.1 ha plots for
SLA. Numbers in parenthesis are percentage of individual assemblages that had observed
metric values below the fifth percentile of the null distribution of metric values.

Grain size Habitat Competitive exclusion
(ha) filtering
Range Kurtosis SDNN SDNNr SDNDr

Abundance

1 1(0) 0.17 (0) 0.3 (6.25) 1(0) 0.6 (25)

0.04 0.22 (0) 0.3 (0) 0.9 (0) 1(0) 0.5 (18.7)

0.1 <0.001 (5) <0.001(8.6) <0.001(6.2) 1(0) 1(11.1)

0.01 0.02 (6.2) <0.001 (5) <0.001 (3.7) 1(6.2) < 0.001 (48.2)
Absence-presence

1 0.03 (0) 0.2 (0) 0.14 (6.25) 1(0) 0.7 (25)

0.04 0.1(0) 0.4 (6.25) 0.2 (0) 1(6.25) 0.5 (12.5)

0.1 0.2 (16.05) 0.008 (15) 0.06 (21) 1(0) 1 (10)

0.01 0.3(5) 0.05 (1.2) 0.14 (8.6) 1(5) < 0.001 (54.3)




