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Temporal Changes in the Diversity and Composition of Tropical Andean Forest 

Communities 

 

ABSTRACT  

During the last few thousand years, human population growth and resource use has 

been reshaping the planet’s nutrient cycles, climate and biodiversity and might be causing 

significant changes to spatial and temporal patterns in the distribution of species, and a 

general erosion of biodiversity at global scales. Many studies have been looking to model 

and predict how species could respond to actual rates of change on environmental 

conditions, with a high interest in terms of species distribution and richness with potential 

extinctions. However, how global change impact local communities still remains unclear. 

Moreover, previous research suffers from a significant bias against Tropical montane 

regions. In this study, we evaluate whether diversity and composition of communities in 

an Andean Tropical forest are changing, potentially in response to changes in 

environmental conditions. We analyze the dynamics in 26 forest plots that are part of a 

larger network of nearly 490 plots located on the eastern slopes of the Bolivian Andes. We 

quantify mortality and recruitment rates, document changes in diversity and compare 

changes in species composition to null model expectations. We have that mortality and 

recruitment rates occur at about 1.6% per year, and that richness seems to be increasing in 

regions of cold climates, but decreasing in warm regions. Finally, we find evidence that 

community composition is shifting across all environmental conditions. Our analyses 

support the idea that communities in the Tropical Andes are going through changes 

consistent with an effect of global change. However, the final causes for the changes we 

observe are yet unknown. Understanding the responses of forest communities is urgently 

needed to advance theory in community ecology, but also to understand and manage 

natural ecosystems in a changing World.  

 

KEYWORDS 

Andes, Bolivia, community composition, global change, null model, species richness, 

tropical forest.  
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INTRODUCTION 

During the last few hundred years, human population growth and resource use has 

been reshaping the planet’s nutrient cycles, climate and biodiversity. Massive 

deforestation, habitat fragmentation, pollution, nitrogen deposition, climate change, and 

ocean acidification are some examples of how human activities might be degrading 

environmental conditions. We are just beginning to understand the consequences that 

these global changes have for the functioning of ecosystems, human health and 

economies around the globe (Parmesan et al. 2003, Lyons et al. 2016).   

Large-scale human activity represent a significant challenge to biodiversity 

conservation because it might be causing significant changes in spatial and temporal 

patterns in the distribution of species, and there is good evidence of a general erosion of 

biodiversity at global scales (Williams et al. 2007, Nolan et al. 2018). At smaller spatial 

scales, however, there is still much uncertainty about how species and communities might 

be responding to global changes. Many studies have been using models to and predict 

how species could respond in particular to change on environmental conditions, with a 

high interest in terms of  species distributions and richness (Clark 2001, Thomas et al. 

2004, Báez et al. 2016). In terms of species distribution, some researchers have examined 

how elevational and latitudinal ranges of species might be changing due to responses to 

temperature increases based on species-specific thermal tolerances (Sheldon 2011; 

Colwell et al. 2008). For example, a recent meta-analysis (Freeman et al. 2018) 

concluded that species’ geographic distributions in mountains are shrinking as they shift 

up slope. This meta-analysis agrees with results from specific mountain chains around the 

world that have measured an upward migration in species distributions of 1.1 to 3.5 

m/year (Lenoir et al. 2008, Chen et al. 2011, Feeley et al. 2011a, Feeley et al. 2013, 

Duque et al. 2015). However, most estimates of changes in species distributions still are 

biased towards temperate regions, with fewer examples in the tropics (Freeman et al. 

2018). 

To complement this species-level perspective, researchers have also been studying 

how local assemblages are responding to changes in environmental conditions through 

time (Iverson and Prasad 1988, Feeley et al. 2011). For example, Vellend et al. (2017) 

recently reviewed studies that quantify temporal changes in local plant diversity during 
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the Anthropocene. Their study found no evidence of systematic loss of species in 

communities. Dornelas et al. (2014) reported similar results in another global meta-

analysis. Authors of these studies use their results to suggest that the environmental shifts 

owing to human impacts might not be causing losses of diversity in local communities 

around the world, which contradicts the widespread expectation that global change is 

eroding diversity from global to local scales.  However, as Chaideftou et al. (2012) have 

suggested, most studies of temporal change in local communities focus on richness, 

emphasizing loss or accumulation of species, with less attention to patterns of species 

composition. Changes in species composition of local communities, although rarer, have 

also been documented. Importantly, Dornelas et al. (2014) suggest that, although species 

richness in local communities is not changing, community composition is becoming less 

variable (that is, beta-diversity is decreasing). This implies a pattern of biotic 

homogenization, and a shift in species composition for local communities. A number of 

studies have also found shifts in the functional composition of communities (Swenson et 

al. 2012, Pescador et al. 2015, Moor et al. 2015), and a pattern of “thermophilization” 

whereby species characteristic of warmer environments are increasing in abundance 

across communities, particularly in regions of low temperature (Gottfried et al. 2012, 

Duque et al. 2015, Osazuwa-Peters et al. 2015). 

However, analyses and meta-analyses of responses of local communities to global 

change suffer from significant biases, particularly because of an underrepresentation of 

tropical communities, Gonzalez et al. 2015). Therefore, the debate continues regarding 

how global changes of the Anthropocene are reshaping the diversity of local 

communities. Gonzales et al. (2015) document this bias in Vellend et al. and Dornelas et 

al. studies, and use it as a critical piece of evidence against their conclusions. This bias is 

also evident in a recently published data base of biological time series: BioTime 

(Dornelas et al. 2018), which shows that the vast majority of datasets of this kind are 

located in temperate regions for both aquatic and terrestrial communities. Tropical 

systems are important because of their high biodiversity, but also because many people 

live in these regions. For example, within the Tropics, the Tropical Andes are considered 

one of the major global hotspots of biodiversity (Báez et al. 2016), where millions of 

people depend on the ecosystem services that natural communities provide such as water 
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capture, pollution removal and food production. Understanding the dynamics of 

communities of the Tropical Andes over time is therefore of particular importance in 

order to elaborate conservation and management plans of tropical forests.  

In this study, we evaluated whether the diversity and composition of species in 

Andean tropical forest local communities are changing, potentially in response to changes 

in environmental conditions. Additionally, we are also interested in understanding if 

shifts in those communities vary across climatic gradients. For this, we present an 

analysis of forest change across a large network of forest plots in Northwestern Bolivia. 

We studied the changes in species richness, and the shifts in composition compared to a 

null model. We found no significant change in the total diversity across these 

communities. However, our analysis suggests that variation in richness change is related 

with temperature, whereby communities are losing species in warm elevation belts while 

communities are gaining species in cold elevation belts. Regarding shifts in composition, 

we found evidence of greater change than expected purely by stochastic demographic 

processes. These composition changes are not related to environmental conditions. 

  

MATERIAL AND METHODS 

a. Study site and data 

In this study, we evaluated temporal changes in richness and species composition in 

local communities of tropical woody plants. For our analyses, we used data of the Madidi 

Project (www.mobot.org/madidi), a collaborative research effort by the Missouri 

Botanical Garden (MBG), the Herbario Nacional de Bolivia (LPB), the Universidad 

Autónoma de Madrid and other associate researchers and institutions. The dataset 

consists of a large network of forest plots distributed along a broad elevational gradient 

(~250 to 4,000 m elevation) in the Madidi Region of Northwestern Bolivia (Figure 1). 

The network of forest plots contains 442 small temporary plots (0.1-ha in area), where all 

woody plants with a diameter at breast height (dbh) >= 2.5 cm have been measured and 

identified (Tello et al. 2015; Arellano et al. 2016). The network also includes 48 large 

permanent plots (1-ha), where all woody plants with a dbh >= 10 cm have been surveyed. 

Of these 48 permanent plots, a subset of 26 has been re-surveyed on average seven years 

after their establishment (range 4 to 11 years, media 7) (Figure 2b). These 26 plots 
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contain information on mortality, recruitment, and temporal changes in richness and 

composition, and are the focus of our study. In each small or large plot, we collected 

plant samples to document each species at each site. Herbarium specimens are available 

at LPB and MO These specimens were used to identify species and morpho-species with 

standardized criteria across the full network of forest plots. The Madidi Project’s plot 

dataset used in these analyses correspond to version 2.0. The plot data are permanently 

stored and can be found online in Tropicos®, the botanical database of the Missouri 

Botanical Garden, at http://tropicos.org/Project/MDI/. 

 

b. Testing for temporal changes in species richness. 

We calculated the observed temporal change in richness and composition for each 

permanent plot. The absolute change in richness (𝑅𝐶𝑟) was measured as the difference in 

the number of species present in the plot at the second census minus those in the first 

census: 𝑅𝐶𝑟 = (𝑅2 − 𝑅1). To account for variation in species richness and the length of 

the interval between censuses, we also calculated a standardized measure of richness 

change (RC) by dividing this difference by the richness of the first census and then by the 

corresponding census interval length (IL) in years (𝑅𝐶 =
𝑅2−𝑅1

𝑅1 × 𝐼𝐿
). All further analyses in 

this manuscript use this standardized measure of richness change. If forest communities 

have been losing species over time consistently across our forest plots, the mean value of 

richness change should be significantly less than zero. To test this prediction, we 

performed a one-sample t-test.  

 

c. Testing for temporal changes in species composition 

Changes in species composition (CCr) were measured using the Bray-Curtis and 

Jaccard distances between censuses. Both measures led to identical conclusions, so here 

we present results based only on Bray-Curtis distances. Like for richness change, we also 

standardized change in composition by dividing this measure by the length of the census 

interval: 𝐶𝐶 =  
𝐶𝐶𝑟

𝐼𝐿
. All analyses in our manuscript use this standardized measure. 

If species composition in these forest communities were shifting (owing to climate 

change or disturbance, for example), we predict that our standardized values of CC 



6 
 

should be greater than expected by non-directional random changes in composition 

driven by stochastic demographic processes, but constrained by the observed rates of 

mortality and recruitment. To test whether species composition changed significantly, we 

compared our empirical values of composition change with values expected by a null 

model where random mortality, recruitment, and immigration from a narrow species pool 

are the only factors at play, and where species in communities are not being driven to 

lower and higher abundances by any specific process.   

 

c. 1) Null model rationale 

Null models are based on randomization algorithms that produce data as expected by 

a null hypothesis, and where a specific effect of interest has been removed. In this way, 

when empirical data are compared to null model data, any difference might suggest a 

significant effect of the mechanisms intentionally excluded from the algorithm generating 

null expectations. In our study, the effect of interest is any directional change in species 

composition. This is manifested by any force that changes the abundances of species by 

making mortality and recruitment rates unequal between species. Species with elevated 

recruitment rates would increase in abundance, while species with elevated mortality 

would decrease in abundance. Thus, our null hypothesis states that per-species mortality 

and recruitment rates are equal across species, leading to a non-directional change in 

species composition through time. According to this null hypothesis, temporal changes in 

the composition are solely those expected by stochasticity in mortality and recruitment, 

but where underlying rates are equal for each species.  

In the specific null hypothesis implemented in our analyses, dynamics are neutral, 

meaning that all individuals, irrespective of species identity, have the same probability to 

die or to be recruited. Algorithms are detailed below. A positive deviation of the 

empirical data from null values indicates more change in species composition than 

expected by the null model; a negative deviation indicates a more stable community than 

expected.  
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c. 2) Description of null model algorithm  

Our null model algorithm constructs null matrices of species abundances across 

censuses 1 and 2 for each of the 26 plots that are the focus of our study. The algorithm 

starts with an empirical composition matrix, where columns represent species, rows are 

censuses, and the values that fill this matrix are abundances (number of individuals). To 

obtain a null matrix:  

1. We copy the abundances in census 1 (first row) from the empirical matrix to the null 

matrix.  

2. For census 2 (second row), we copy the abundances in census 1. Thus, initially, census 

1 and 2 in the null matrix are identical. 

3. Random mortality: We randomly select a set of M individuals from the second census. 

This number M is equal to the number of individuals found dead in the empirical plot 

re-surveys. In our null model, all individuals have the same probability of being chosen, 

independent of their species identity.  

4. These M individuals are then removed from the second census.  

5. Random recruitment: We randomly select a set of R individuals from the species pool 

(we defined the species pool in several ways to identify the most appropriate approach; 

details are described in the next section). This number R is equal to the number of 

recruits found in the empirical plot re-surveys.  

6. Finally, these R individuals are added to the second census. 

The final product is a null matrix where the first census is identical to the empirical 

matrix, but the second census results from random mortality and recruitment across 

species. This process was repeated 1,000 times resulting in 1,000 null matrices for each 

of the 26 local plots. The final step of the null model analysis is to calculate the 

composition change (standardized Bray-Curtis distances) between censuses in the 

empirical matrix, and in each of the null matrices. This produces a distribution of null 

values of composition change against which the empirical values can be compared.  

In order to interpret the results from the null model, we use a standardized effect size 

(SES). This value quantifies the difference between the observed value of the metric and 

the mean of the null values; and is given by the formula: SES = [CCemp – mean(CCnull )] / 

sd(CCnull). The standardized effect sizes are positive for communities that experience 
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more temporal turnover than expected, and it is negative for those that are more stable. If 

forest communities have been shifting in species composition over time consistently 

across our forest plots, the mean of SES values should be significantly greater than zero. 

To test this prediction, we performed a one-sample t-test.  

 

c. 3) Definition of species pools and recruitment probabilities  

Our null model uses a species pool to define the potential set of species that can 

contribute to the recruitment of new individuals during randomizations for the second 

census. Defining the species pool only as the species found in the focal plot is too narrow 

and can lead to an underestimation of the potential change in composition that can 

happen by simple random dispersal from adjacent areas. Defining the pool as all the 

species found in the regions is too broad and can lead to an overestimation of the 

potential turnover owing to null recruitment of species that cannot possibly disperse to or 

tolerate the conditions in a particular local community. Thus, we built species pools that 

represent a balance by using the total abundances of each species found in a specific 

region surrounding each focal plot.  

The region around each focal plot was delimited using elevational distances (as a 

proxy for environmental conditions). For each plot, we constructed three species pools, 

which include species data for all plots in elevational bands of 100 m, 200 m and 300 m 

centered on the focal plot. For building these species pools, we considered species 

present in the 26 re-measured plots, but also species found in the other 22 large 1-ha plots 

and the 442 small plots. In the small plots, we considered only data from trees with a dbh 

≥ 10 cm to match the diameter cut-off in the large focal plots. As expected, the number of 

species in the species pool increased with the width of the elevational band (Figure S1). 

We did not use elevational bands larger than 300 m because our null hypothesis implies 

that the recruitment occurs only from species that can tolerate the conditions in the focal 

plot, thus maintaining the same species composition from census 1 to census 2.  

Additionally, the probability of contributing to recruitment in the local plot was not 

equal across the entire species pool. Instead, we modeled the recruitment so that the 

species in plots geographically near the focal plot are more likely to be recruited, than 

species in plots far away. To do this, we used an exponential function to describe the 



9 
 

decay in recruitment probability with increasing distance. This function is based on an 

exponential dispersal kernel as described by Nathan et al. (2012): Pdisp =
1

2𝜋𝑎2 
exp (−

𝑟

𝑎
), 

where r is the distance to the focal plot, and a is half the mean dispersal distance. The 

function is parameterized by one value that corresponds to the “mean dispersal distance”. 

To evaluate how “dispersal distance” modifies our results, we varied this parameter from 

0.01 km to a maximum of 22.16 km (half of the median of the distances among plots). 

Small values of dispersal distance cause individual arrival probabilities to fall quickly 

with geographic distance; larger values increase the chances that individuals in plots far 

away can contribute to dispersal. Figure 2 shows how the recruitment probability for 

individuals in the species pool changes with geographic distance, and how the shape of 

this curve is influenced by the “mean dispersal distance” parameter.  

Null model analyses were run for each plot (26 plots), and for each combination of 

species pool size (3 elevational bands) and dispersal distance (50 values). In total, we run 

3,900 null model analyses. We use these to document the variation in results and find the 

most appropriate combination of species pool size and dispersal distance used to interpret 

our results (detail in results). All functions for null model analyses were written in R and 

are available in the Supplementary Material.  

 

d. Changes in richness and composition across climatic gradients  

To evaluate the relationship between richness and composition changes with climate, 

we performed a series of multiple linear regressions. In these analyses, empirical values 

of richness change and change in composition were used as dependent variables, while 

mean annual temperature and annual precipitation were used as predictors. Climate data 

was extracted from WorldClim version 2.0 using plot coordinates.  

We also conducted similar analyses to evaluate the relationship between climate and 

standardized effect sizes (SES) of change in species composition. These analyses look to 

explain the change in species composition after null model expectations are taken into 

account. We conducted separate analyses for the subset of null models defined by using 

the different band widths and the maximum mean dispersal distance where the richness 

change is not significant in each species pool (dR values in Figure 4). These values 

represent the dispersal distances that maintain the observed local richness between census 
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1 and 2, and are consistent with the null hypothesis in the null model of no change in 

community structure. The values used were 0.60 km for mean dispersal distance in the 

100 m elevational band, and 0.32 km for the 200 m and 30 m elevational bands (Figure 

4). 

 

RESULTS 

There was significant turnover of individuals between censuses in our data: we found 

that on average both mortality and recruitment happens at a 1.6% per year rate (both 

community-wide rates are not significantly different from one another; Figure 2c). This 

translates into an average of about 75 deaths and 78 recruitments between censuses 

across plots. We later describe how these rates are enough to create temporal shifts in 

diversity and composition. 

 

Species diversity 

During the first census, species richness in the 26 focal plots varies broadly from 20 

to 100 species (Figure 2a). When comparing species richness between censuses 1 and 2, 

we found losses of one to three species for some plots, gains of not more than three 

species for others and 5 plots did not show any change in richness at all (Figure 3a). I 

fact, a one-sample t-test showed that the mean standardized change in species richness 

between censuses did not differ significantly from zero (Figure 3b), indicating that there 

was not a consistent gain or loss of species across local communities.  

Importantly, however, regression analyses did find that temperature was a significant 

predictor of variation in richness change (p = 0.034; Table 1; Figure 4). Most of the plots 

with a positive change occur below 13 oC temperature (3 out of 5), while all the plots 

with a negative change in richness occur in sites above 14 oC (16 out of 16). This analysis 

suggests that communities experiencing warm temperatures tended to lose species, while 

communities in colder environments might be gaining species (Table 1, Figure 4). The 

same analysis failed to find an effect of precipitation (p = 0.192; Table 1), or an 

interaction between temperature and precipitation (not shown).  
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Species composition 

Species composition for these communities changed to some degree between 

censuses, with an average standardized Bray-Curtis distance of 0.0089 (Figure 3c and 

3d). However, unlike for richness, we cannot know if these values are more than 

expected by chance with a simple statistical test. To understand if community 

composition in these communities is changing directionally, we compared empirical 

values to values expected by a null model.  

First, we compared the observed change in species richness (RC) to null model 

expectations. This analysis helped us find the values of dispersal distance for each species 

pool (i.e., elevational band) that result in no change in species richness in the null 

communities (Figure 5; first row). This was important because our null model assumes no 

changes in the number of species in the community. Dramatic changes in species richness 

by unrealistic recruitment of new species in the null model could confound results in 

community composition. Our results corroborate that the larger the species pool and 

dispersal distances are, the larger the increase in null species richness (Figure 5). We 

found that dispersal distances of more than about 0.6 km lead to increases in species 

richness that are significantly greater than zero (Figure 5a). These null increases are also 

inconsistent with the empirical change in richness across plots, which is slightly negative 

(but not significantly so; Figures 3 & 5). Thus, if we use dispersal distances greater than 

0.6 km, null composition will change owing to increases in richness, not directional 

changes in abundance that are our factor of interest.  

We then compared the observed change in species composition (CC) to null model 

expectations. Specifically, we calculated standardized effect sizes, which represent the 

difference between empirical and null values of composition change (Figure 6). We 

found that SES of composition change varies with species pool size and mean dispersal 

distances used during null model analyses (Figure 6). At small to intermediate dispersal 

distances, mean SES of composition change is significantly higher than zero. This 

indicates a consistent change in community composition that is greater than expected by 

the null model. Beyond a certain dispersal distance (dC; Figure 6), however, mean SES 

does not differ significantly from zero (Figure 6). Also, with a wider species pool, the 

maximum mean dispersal distance for which communities show a significant 
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compositional change is smaller. Importantly, the dispersal distances in our null model 

that produce zero change in richness (dR; Figure 5) always lead to the conclusion that 

community composition is changing more than expected purely by stochastic 

demographic processes (compare Figures 5 and 6; Figure 7). 

Finally, despite evidence for significant changes in species composition across 

communities, community compositional change did not show environmental gradients, 

suggesting that all the communities are changing along that gradient. Neither empirical 

values of composition change (Bray-Curtis distances) nor SES values have significant 

relationship with temperature or precipitation (Table 1).  

 

DISCUSSION 

Our analysis of how tropical Andean communities change over time provide insights 

into biodiversity trends during the Anthropocene. First, we find that although trees are 

long-lived, rates of mortality and recruitment reach around 1.6% individuals per year. We 

also show that these rates are enough to detect temporal trends of community change over 

the 4 to 11 years between censuses in our data. We find that there is not a consistent 

change in richness in local communities, but that this is the result of a balance between 

communities losing species, and others gaining species which translates in no change in a 

more regional scale. Specifically, we find that communities in cold climates might be 

increasing in richness, while communities in warm climates might be decreasing. This 

pattern is probably also linked to our finding that communities are shifting significantly 

in species composition across all elevations and climates.  

 

No consistent change in species richness, but change is related to temperature  

Whether local species richness is changing during the Anthropocene has been the 

subject of recent debate (Cardinale et al. 2018). The common belief is that biodiversity is 

declining (McGill et al. 2015). However, even though there is evidence that this is so at 

the global scale, patterns within local communities are less clear. While recent meta-

analyses claim that communities are not gaining or losing species (Vellend et al. 2013, 

Dornelas et al. 2014, Vellend et al. 2017), others point towards problems with analyses 

and data to suggest that human impacts are decreasing diversity at all spatial scales 
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(Cardinale et al. 2018). Our study helps to fill an important gap in previous meta-

analyses, where tropical communities have been dramatically under-represented.  

Our analysis showed that the general change in richness is not significantly different 

from zero across local communities for this region (Figure 3b). This initial result supports 

the conclusions of Vellend, et al. and Dornelas, et al. suggesting no change in local 

diversity. One potential explanation for our result is that time between censuses is not 

enough to detect any changes if they are happening. However, when we ran our null 

model randomizations and estimated the number of species lost or gained, many 

scenarios led to significant changes in richness. Particularly, null communities lost 

species when recruitment considered only individuals near the focal plot, while null 

communities gained many species when recruitment considered individuals also from far 

away (Figure 4). This demonstrates that our analyses have enough statistical power to 

detect species losses and species gains, as well as changes in community composition.  

Despite no consistent change in richness, we found that among-community variation 

in richness change showed a significant relationship with annual mean temperature 

(Table 1; Figure 7). This suggest contrasting patterns for communities at opposing ends 

of the elevational gradient. While communities in warmer temperatures are losing 

species, communities in colder environments are gaining species (above the expected by 

random demography). Although we do not know what processes are responsible for this 

pattern of richness change, its significant relationship with temperature suggests that one 

plausible explanation is global warming. Species elevational ranges can respond in 

multiple ways to changes in temperature: they can migrate to higher elevations to track 

their preferred environmental conditions, some species can be subject to lags and 

encounter new conditions and/or competitors, or they can adapt and retain their 

distributions (Alexander et al. 2016,  Colwell et al. 2008). Our results are consistent with 

this first simple model of species responses to climate change, whereby upslope shifts in 

species distributions might be causing attrition of biodiversity of lowland communities, 

and an initial enrichment of higher elevation communities. Our results are also consistent 

with a pattern showed in other empirical studies that show an upward migration of 

species tracking their thermal preferences (Feeley et al. 2013, Duque et al. 2015, 

Lamprecht et al. 2018), however we cannot conclude about the directionality just from 
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our results. According to Feeley (2011b), Andean species need to migrate at a rate of 5.5-

7.5 m/year in order to remain in equilibrium following the observed increase of 

temperature over the past four decades. As a result, tropical lowlands could suffer species 

richness reduction due to a lack of species adapted to higher temperature which can cause 

a range retraction for some species (Duque et al. 2015), while species sift upwards 

enriching communities at higher elevations (Colwell et al. 2008, Feeley and Silman 

2010). This enrichment, however, could potentially be temporary, with an extinction debt 

at higher elevations that will reduce diversity as new competitors and climate change 

drive some species extinct as consequence of a reduction of suitable habitats for species 

from those elevations (Alexander et al. 2016, Freeman et al. 2018).  

  

Local community composition is changing across a broad elevational gradient 

Our analyses showed also that there was a significant shift in species composition. 

When we used the null models for which change in richness was zero, our communities 

showed higher temporal turnover than expected by chance. In fact, significant changes 

occurred, even for much larger “dispersal” distances in our analyses (Figure 5). 

Additionally, these changes in composition were significant for most individual sites 

(Figure 7), but showed no relationship with temperature or precipitation, suggesting that 

communities are changing irrespective of their climatic conditions. These results are 

consistent with the pattern observed in previous studies, which have found evidence of 

species migration in the tropics in response to climate change. For example, Feely et al. 

documented upward shifts in species distributions in the order of 1.18 m/year in Costa 

Rica (Feeley et al. 2013), and of 2.5-3.5 m/year in in Peru (Feeley et al. 2011b), while 

Duque et al. documented a shift of 2.2 m/year in Colombia (Duque et al. 2015). However, 

solely based on our analysis, we cannot infer the directionality or mechanisms behind 

these changes. Although climate change is an important potential explanation, other 

forces that might be driving community change include recovery from past human or 

natural disturbances, nitrogen deposition, or ongoing disturbance by human activity. 

Direct impact of human activity, however, is unlikely, as most of these sites are remote, 

and nearby towns are relatively small. Regardless of the causes, the observed consistency 

of changes in community composition are important. Shifts in the structure of natural 
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communities can cause concomitant changes to the functioning of ecosystem (Williams 

et al. 2007, Garcia et al. 2014, Nolan et al. 2018). The relationship between ecosystem 

functions and species composition, however, is poorly understood.  

Few communities showed non-significant changes in species composition, and some 

have less change than expected by chance. So, although there is no significant 

relationship with temperature or climate, some communities might be less affected by 

processes driving community change, and some might also be regulated to remain 

constant through time. This regulation in community structure was documented as 

widespread for natural communities by Gotelli et al.(2010). What makes some 

communities stable through time, and others shifting is unclear and deserve further 

analysis. The relative frequency of regulated vs. changing communities itself is unclear, 

but it might vary across regions. Mountainous regions seem to be more strongly impacted 

by climate change (Rixen et al. 2018), and in particular high elevations in the Andes 

seem to be changing in climate more rapidly than other regions (Feeley et al. 2012, Báez 

et al. 2016). So Andean communities might be prone to shifts in community composition 

more than the global average. This explanation requires further study, however, it is 

consistent with the findings of Fadrique et al. (2018) who also document that most 

Andean tree communities are suffering from widespread but heterogeneous shifts in 

mean community temperature (i.e. thermophilization) across all elevations.  

 

Limitations of our analyses and data 

As mentioned before, one of the most frequent criticisms to datasets like ours is the 

short time interval between censuses, particularly considering that trees can be long lived. 

However, our null model analyses prove that there is enough mortality and recruitment in 

our datasets to detect changes in species richness and composition. Additionally, previous 

studies with similar systems and intervals length between censuses also found that 

distribution of species showed evidence of upward migration (Feeley et al. 2011b, Feeley 

et al. 2013). Thus, we are confident that our analyses reflect real patterns in ecological 

communities, and not a lack of statistical power.  

Another aspect to consider is that, even though null models are easy to implement, 

and have been used for many ecological studies trying to understand how communities 
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are assembled in time and space (Gotelli 2001), we need to be cautious when applying 

them. Previous studies show that results of null model analyses can vary significantly 

depending on how randomizations are constructed. This is part of the reasons why we 

varied the size of the species pool and the “mean dispersal distance” in our null models, 

creating 150 different scenarios (3 species pools times 50 dispersal distances). We then 

focus our conclusions on the values of dispersal distance that lead to zero change in 

richness, which is consistent with our null model.  

Additionally, we re-ran our analysis with two alternative null models to compare our 

results and interpretations. We used a very basic null model described by Gotelli et al. 

(2010), which has been used in previous ecological studies. Unlike our null model, 

Gotelli et al.’s algorithm assumes 100% mortality and recruitment: to create null matrices 

all individuals are removed and matrices are randomly filled again. With this null model, 

SES for change in community composition is significantly lower than zero, which would 

lead to the conclusion that communities are more stable than expected by chance where 

they are created from scratch from the species pool (Figure S3). The null model described 

by Gotelli et al., however, is not appropriate for dataset like ours, where many individuals 

survive between censuses. The null model algorithm used for our analysis improves upon 

Gotelli et al.’s by considering the empirical rates of mortality, recruitment and survival, 

while also uses data from an external species pool for recruitments. 

Nevertheless, our conclusions are contingent on using the correct null model, and null 

models are always coarse tools that only allow us to make first steps toward 

understanding mechanisms (Gotelli et al. 2010, de Bello 2012, Götzenberger et al. 2016). 

Future analyses should consider shifts in the functional structure of communities that will 

allow us to test more specific predictions about hypothesized mechanisms behind the 

community changes we observe (Ackerly and Cornwell 2007). At the moment, however, 

complete functional data for species in our communities are not yet available. 

Complementarily, experimental studies are needed to test for mechanisms of community 

change operating in these Andean communities. Such experiments, however, are 

expensive and can be accomplished solely at smaller spatial and temporal scales. Though, 

a better understanding of temporal changes in community composition can be gained by 
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large-scale observational studies like ours, complemented with functional data and 

experimental tests.  

 

Conclusions 

In conclusion, our analysis supports the idea that communities in the Tropical Andes 

are going through changes in their diversity and composition. Richness seems to be 

increasing in communities in cold climates, and decreasing in communities in warm 

climates. Species composition is shifting in most communities and across climate 

gradients. The patterns we find are consistent with an effect of global change, and 

particularly climate change, matching previous studies in other regions of the Andes; but 

more other analysis are necessary to test hypothesis regarding possible responsible 

mechanisms. Our study and previous work suggests that human impacts might be 

reaching biodiversity even in remote places away from evident human activity. However, 

as mentioned the final causes for the changes we observe are yet unknown, and to better 

understand them we would need to expand on our analyses to consider other forms of 

diversity, like functional community composition, and other approaches, like 

experimental manipulation. This type of research is urgently needed to advance theory in 

community ecology, but also to understand and manage natural communities in a 

changing world.  
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TABLES 

Table 1. Relationships between changes in species richness and composition with 

climate. Regression analyses show the association between changes in species richness 

and temperature (in italics; Figure 6), but fail to find other significant relationships. These 

analyses were conducted for the observed standardized values of richness change (RC) 

and composition change (CC; measured as Bray-Curtis distances). Analyses were also 

conducted using standardized effect sizes of composition change (SESCC) from null 

model analyses. For SES of composition, we present three different results, which 

correspond to varying elevational band widths used to define species pool. Moreover, we 

used the maximum mean dispersal distance where the richness change is not significant 

in each elevational band (dR values in Figure 4). These values represent the dispersal 

distances that maintain the observed local richness between census 1 and 2, and are 

consistent with the null hypothesis in our null model of no change in community 

structure. The values used for band 1 were 100 m of elevation width and 10.09 km for 

mean dispersal distance; for band 2 were 200 m and 3.93 km; for band 3 were 300 m and 

2.45 km. 

 

 

 

  

Response Intercept Temperature Precipitation Adjusted R2 

Coefficient P Coefficient P 

Standardized RC -0.0014 -0.0017 0.034 -0.0010 0.192 0.224 

Standardized CC 0.0089 -0.0002 0.742 0.0008 0.202 -0.011 

SESCC band 1 3.0835 -0.5866 0.306 0.0549 0.923 -0.036 

SESCC band 2 3.1887 -0.5291 0.335 0.0117 0.983 -0.040 

SESCC band 3 3.1451 -0.5542 0.312 0.0408 0.940 -0.037 
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FIGURES 

Figure 1. Location of the study region and plot network. (a) The Madidi Region, 

where this study was conducted, is located in eastern slopes of the Bolivian Andes in the 

areas inside and around the Madidi National Park. (b) The plot network used in our study 

includes 48 large (1-ha) permanent plots (circles), and 442 small (0.1-ha) temporary plots 

(white squares). Twenty-six of the large plots have been re-surveyed and are the focus of 

our study (orange circles). The plot network covers a broad elevational range from 

lowland Amazon forests (~ 250 m) to the tree line (~ 4,250 m). For details, see methods 

or visit www.mobot.org/madidi. 
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Figure 2. Fundamental data in the twenty-six permanent plots with re-survey data. 

(a) Variation in species richness in each plot at the time of the initial survey (i.e., census 

1). (b) Interval length in years between census 1 and census 2 for each plot. (c) Variation 

in mortality and recruitment rates (measured as a proportion of individuals per year). A 

paired two-sample t-test found no significant differences between mean mortality and 

recruitment across the 26 plots.   

 

  



25 
 

Figure 3. Observed temporal changes in richness and community composition. (a) 

Temporal change in richness between first and second censuses measured as difference in 

numbers of species. (b) Same as in (a), but change in richness has been standardized to 

consider variation in initial richness and interval length between censuses in each plot 

(see Methods). Here, a one-sample t-test shows no significant difference from zero in 

average richness change per year. (c) Temporal change in species composition between 

censuses measured as Bray-Curtis distances. (d) Same as in (c), but composition change 

has been standardized to account for variation in interval length.  
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Figure 4. Relationship between changes in richness and temperature. The figure 

shows results form a linear regression where mean annual temperature (in °C) is used to 

predict variation in standardized richness change. This was the only significant 

relationship with climate found in our regression analyses (R2 = 0.224; see Table 1), 

suggesting that plots in cold climates might be gaining species, while plots in warm 

climates might be losing species. Each circle represents one plot (n = 26). The black line 

is the univariate regression line, and the grey dashed line is the tendency curve. The 

horizontal line indicates the richness change of zero. Regression statistics can be found in 

Table 1.  
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Figure 5. Patterns in null richness change as expected by the varying conditions of 

the null model algorithm. This figure shows how the null values of standardized change 

in richness (i.e., produced by the null model) vary when using different elevational bands 

(panels) and dispersal distances (x-axes) to define recruitments during randomizations of 

the null model analyses (see Methods). The horizontal solid line represents the absence of 

change in richness with time (RC = 0). The horizontal dashed line represents the average 

change in richness observed in the empirical data across all 26 plots (Figure 3b). Tringles 

represent the average of null model expectations across 26 plots for each combination of 

elevational band and mean dispersal distance. Grey areas around triangles indicate 95% 

confidence intervals around those null averages. Green triangles represent average null 

richness change statistically different from zero based on one-sample t-tests, while black 

triangles represent null richness change values not different from zero. The vertical 

dashed line and the number next to it indicates the maximum distance where null richness 

change is not significantly different from zero. This indicates the maximum dispersal 

distance that the null model can use and that does not lead to a null increase in species 

richness by recruitment from outside the plot.  
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Figure 6. Patterns in standardized effect size of temporal change in composition 

with varying size of species pools and mean dispersal distance. This figure shows how 

the empirical change in species composition differs from the values expected by the null 

model (standardized effect sizes: SES) under different conditions for the random 

recruitment of individuals: different elevational bands (panels) and dispersal distances (x-

axes; see Methods). Composition change in the empirical and null data was calculated 

using standardized Bray-Curtis distances. Circles represent the average standardized 

effect size (SES) across 26 plots for each combination of elevational band and mean 

dispersal distance. Grey areas indicate 95% confidence intervals around those averages. 

Positive SES indicate changes in composition that are greater than expected, while 

negative SES represent changes smaller than expected. Red circles represent average SES 

statistically different from zero based on a one-sample t-test. Black circles represent SES 

values not different from zero. The solid horizontal line indicates the SES of zero. The 

vertical dashed line and the number next to it indicates the maximum distance where the 

SES is significantly greater than expected by the null model (dC). For reference, we also 

include dR, or the maximum distance that does not lead to an increase in null richness due 

to immigration during recruitment (see Figure 4).  
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Figure 7. Variation in the standardized effect size of temporal change in 

composition for each of the 26 large plots. Each panel shows the SES of composition 

change under a different combination of elevational band and dispersal distance. The first 

row correspond to the three elevational bands, each using the maximum dispersal mean 

distance where our null model produces a zero change in null richness (dR values from 

Figure 4). The second row corresponds also to the three elevational bands, each using the 

maximum dispersal distance where mean  SESCC is significantly greater than expected by 

the null model (dC values from Figure 5). Orange bars are higher than 2 and indicate 

individual communities that are changing more than expected by the null model. Light-

blue bars are less than -2, and indicate communities that are changing less than expected. 

White bars indicate communites that show no evidence of significant change in 

composition.   
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SUPPLEMENTARY MATERIAL 

Figure S1. Variation in size of species pools across elevational band widths. The size 

of the species pool was defined as the number of species found across all plots within an 

elevational band centered at a specific plot. The boxes show the variation in size of 

species pools for each for the 26 focal plots. All species in the species pool could 

potentially contribute to recruitments (see Methods). 
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Figure S2: Shapes of the relationship between recruitment probability and distance 

from focal plot for varying values of mean dispersal distance. Each curve describes the 

distribution of relative probabilities of contributing to recruitment in the local plot as a 

function of distance from the focal plot. We obtained these curves by using an 

exponential dispersal kernel parameterized by the mean dispersal distance (Nathan et al., 

2012). In this way, individuals in plots near the focal plot are more likely to “contribute” 

to the recruitment, while individuals in plots far away are less likely to do so. However, 

the relative probabilities change with mean dispersal distance. If dispersal distance is 

small (green line), the probabilities decline very rapidly. If the dispersal distance is large 

(red line), the probabilities decline less abruptly. All the individuals in plots within the 

species pool (defined by an elevational band centered in the focal plot) are considered.  
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Figure S3. Standardized effect size of temporal change in composition using three 

different null models. Each box shows the variation in standardized effect size across 

the 26 plots analyzed for each null model. G.2010 refers to the null model described by 

Gotelli et al. 2010, where there is a complete turnover of individuals (i.e. 100% of deaths 

and recruits). M+R is a null model that considers empirical data on mortality, recruitment 

and survival rates, but where random recruitment considers only data from the focal plot. 

For the M+R+SP null model, we present three different results, which correspond to 

varying elevational band widths. For each band, we used the maximum mean dispersal 

distance where the richness change is not significant (dR values in Figure 4). This 

represent the dispersal distances that maintain the observed local richness between census 

1 and 2, and are consistent with the null hypotheses of no change in community structure. 

The values used for band 1 were 100 m of elevation width and 10.09 km for mean 

dispersal distance; for band 2 were 200 m and 3.93 km; for band 3 were 300 m and 2.45 

km. Further null models details are given in the text. 
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## Supplementary code for the thesis: 

## Title: Temporal changes in the diversity and composition Tropical Andean  

##           Forest communities 

## Author: Claudia A. Aparicio-Chavez 

 
#################################################################

########## NULL MODELS 

################################################################# 

 

## DESCRIPTION ## 

# MatrixRandom creates random matrices based on a composition  

# matrix.  

 

## ARGUMENTS ## 

# compo : a composition data matrix. Columns are species and rows 

# are censuses.  

# n.rand : number of randomizations. 

# rand.type : null model type analysis; rand.type = 1 applies the 

# null model described by Gotelli et al. 2010; rand.type = 2   

# applies the null model based on the empirical data for  

# mortality and recruitment during the re:survey. 

# pool.probs : Matrix with recruitment probabilities for the 

# species conforming the pool. If missing, the probabilities are  

# calculated based on the composition matrix. 

# N.mort : Number of individuals dead  

# N.recruit : Number of individuals recruited 

 

## VALUE ## 

## empirical : the empirical matrix of composition  

## null : list containing all the randomized matrices 

 

## REFERENCES ## 

# Gotelli, N. J. et al. 2010. Detecting temporal trends in  

# species assemblages with bootstrapping procedures and  

# hierarchical models. - Philos. Trans. R. Soc. B Biol. Sci.  

# 365: 3621-3631. 

 

MatrixRandom <- function(compo, n.rand, rand.type = 1, 

pool.probs, N.mort, N.recruit){ 

    if (missing(pool.probs)) { 

    pool.probs <- colSums(compo)  

    pool.probs <- pool.probs / sum(pool.probs) 

  } 

   

  if(sum(pool.probs) != 1) 

    warning("Pool probabilities do not sum to 1") 

 

  if(!all(colnames(compo) %in% names(pool.probs))) 

stop("Not all species in the local community are in the 

meta-community vector")   
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## Probability of belonging to a given species 

s <- pool.probs 

   

## Total abundances of individual per census, for each species 

Abund.t <- rowSums(compo) 

 

## Total number of individuals in the plot from all the species 

# and censuses 

N <- sum(Abund.t) 

 

## Probability of being present in a given census  

q <- Abund.t / N 

 

compo <- compo[, match(names(pool.probs), colnames(compo))]  

colnames(compo) <- names(pool.probs) 

compo[is.na(compo)] <- 0 

 

Matrix.r <- sapply(rep(NA, n.rand), list) 

Richness.M <- rep(NA, n.rand) 

   

  for(i in 1:n.rand) { 

    if(rand.type == 1) { 

       

## Assign N individual to a census with probability q 

Census.new <- sample(rownames(compo), N, prob = q, replace = 

TRUE) 

         

## Assign N individual to a species with probability s 

Sp.new <- sample(colnames(compo), N, prob = s, replace = TRUE) 

       

## Matrix of new values for census and species for the new  

# individuals 

compo.rand <- table(Census.new, Sp.new) 

    } 

     

if(rand.type == 2) { 

       

### Matrix with new values  

## Census 1 is fixed 

compo.rand <- compo 

compo.rand [2, ] <- NA 

           

# Matrix with individuals selected randomly for mortality      

M <- rep(colnames(compo), compo[1, ]) 

sp.mort <- sample(M, N.mort) 

compo.mort <- table(sp.mort) 

compo.mort <- compo.mort[match(colnames(compo), 

names(compo.mort))] 

names(compo.mort) <- colnames(compo) 

compo.mort[is.na(compo.mort)] <- 0 
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## New matrix after mortality 

compo.rand[2, ] <- compo[1, ]-compo.mort 

   

# Matrix with individuals selected randomly for recruitment  

sp.recruit <- sample(colnames(compo), replace = TRUE,  

                           size = N.recruit, prob = s) 

       

compo.recruit <- table(sp.recruit) 

       

compo.recruit <- compo.recruit[match(colnames(compo), 

names(compo.recruit))] 

names(compo.recruit) <- colnames(compo) 

compo.recruit[is.na(compo.recruit)] <- 0 

       

## New matrix after recruitment 

compo.rand[2, ] <- compo.rand[2, ] + compo.recruit 

}   

                              

compo.rand <- compo.rand[,match(colnames(compo), 

colnames(compo.rand))] 

colnames(compo.rand) <- colnames(compo) 

compo.rand[is.na(compo.rand)] <- 0 

   

compo.rand <- compo.rand[match(rownames(compo), 

rownames(compo.rand)),] 

       

Matrix.r[[i]] <- as.matrix(compo.rand)  

} 

   

output <- list(compo, Matrix.r) 

names(output) <- c("empirical", "null") 

output 

} 

 

################################################################# 

### 2. DISSIMILARITY MEASURES 

################################################################# 

 

## DESCRIPTION ## 

# DistanceComposition Calculates similarity indices based on the 

# vegdist function for the empirical and null composition  

# matrices.  

 

## ARGUMENTS ## 

# compo : An empirical composition data matrix. Columns are  

# species and rows are censuses.  

# Matrix.r : List of null matrices. Its format is the same as  

# compo  

# method : Dissimilarity index, as used by the vegdist{vegan}  

# function  

# IL : Interval length in years between censuses. 
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## VALUE ## 

# compo.dist.Emp.raw : Empirical composition change value 

# diffR.Emp.raw : Empirical richness change value  

# diffR.ES.Emp : Standardized empirical change in richness by  

# year 

# compo.dist : Standardized change in composition by year 

# ses : Satndardized effect size for the change in composition 

# p.value : P value for the change in composition as a  

# proportion of null values greater than the empirical value 

# p.value2 : P value for the change in composition as a  

# proportion of null values lower than the empirical value 

# diffR : Richness difference for the null matrices 

# ses.diffR : Standrdized effect size for the richness  

# difference for each null matrix 

# p.value.diffR : P value for the change in richness as a  

# proportion of null values greater than the empirical value. 

# p.value2.diffR : P value for the change in richness as a  

# proportion of null values lower than the empirical value 

 

## Similarity distance of compo between censuses  

DistanceComposition <- function(compo, Matrix.r, method, IL) { 

   

# Required packages 

require(vegan) 

require(gtools) 

   

# Distance for the empirical matrix 

compo.dist.Emp.raw <- vegdist(compo, method = method) 

compo.dist.Emp <- compo.dist.Emp.raw / IL 

   

CensusR <- rowSums(compo > 0) 

diffR.Emp.raw <- CensusR[2] - CensusR[1] 

diffR.Emp <- (diffR.Emp.raw / CensusR[1]) / IL 

diffR.ES.Emp <- ln((CensusR[2]/CensusR[1]) / IL*0.1) 

   

# Distance for the randomized matrices 

n.rand <- length(Matrix.r) 

compo.dist <- sapply(rep(NA, n.rand), array) 

diffR <- rep(NA, n.rand) 

   

  for(k in 1:n.rand) {   

    compo.dist[k] <- as.vector(vegdist(Matrix.r[[k]], method = 

method)) 

 

CensusR.rand <- rowSums(Matrix.r[[k]] > 0) 

diffR[k] <-  (CensusR.rand[2] - CensusR.rand[1]) / 

CensusR.rand[1] 

  } 

   

compo.dist <- compo.dist / IL 

diffR <- diffR / IL 
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# Composition and richness changes 

compo.dist <- c(compo.dist.Emp, compo.dist) 

diffR <- c(diffR.Emp, diffR) 

 

## Standard Effect Size (SES): composition 

ses <- (compo.dist.Emp - mean(compo.dist)) / sd(compo.dist) 

## P VALUES 

p.value <- sum(compo.dist.Emp <= compo.dist) / n.rand 

p.value2 <- sum(compo.dist.Emp >= compo.dist) / n.rand 

   

## Standard Effect Size (SES): richness 

#ses.diffR <- (diffR.Emp - mean(diffR))/sd(diffR) 

ses.diffR <- (0 - mean(diffR)) / sd(diffR) 

   

## P VALUES 

p.value.diffR <- sum(diffR.Emp <= diffR) / n.rand 

p.value2.diffR <- sum(diffR.Emp >= diffR) / n.rand   

   

output <- list(compo.dist.Emp.raw, diffR.Emp.raw, diffR.ES.Emp, 

compo.dist, ses, p.value, p.value2, diffR, ses.diffR, 

p.value.diffR, p.value2.diffR) 

names(output) <- c("compo.dist.Emp.raw", "diffR.Emp.raw", 

"diffR.ES.Emp", "compo.dist", "ses", "p.value", "p.value2", 

"diffR", "ses.diffR", "p.value.diffR", "p.value2.diffR") 

output  

} 


	University of Missouri, St. Louis
	IRL @ UMSL
	11-26-2018

	Temporal Changes in the Diversity and Composition of Tropical Andean Forest Communities
	Claudia Andrea Aparicio-Chavez
	Recommended Citation


	tmp.1544136829.pdf.TcUuO

